Multi-level feature fusion for multimodal human activity recognition in Internet of Healthcare Things

计算机科学 卷积神经网络 活动识别 可穿戴计算机 特征(语言学) 人工智能 传感器融合 模态(人机交互) 可靠性(半导体) 深度学习 模式识别(心理学) 机器学习 嵌入式系统 量子力学 语言学 物理 哲学 功率(物理)
作者
Md. Milon Islam,Sheikh Nooruddin,Fakhri Karray,Ghulam Muhammad
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 17-31 被引量:84
标识
DOI:10.1016/j.inffus.2023.01.015
摘要

Human Activity Recognition (HAR) has become a crucial element for smart healthcare applications due to the fast adoption of wearable sensors and mobile technologies. Most of the existing human activity recognition frameworks deal with a single modality of data that degrades the reliability and recognition accuracy of the system for heterogeneous data sources. In this article, we propose a multi-level feature fusion technique for multimodal human activity recognition using multi-head Convolutional Neural Network (CNN) with Convolution Block Attention Module (CBAM) to process the visual data and Convolutional Long Short Term Memory (ConvLSTM) for dealing with the time-sensitive multi-source sensor information. The architecture is developed to be able to analyze and retrieve channel and spatial dimension features through the use of three branches of CNN along with CBAM for visual information. The ConvLSTM network is designed to capture temporal features from the multiple sensors’ time-series data for efficient activity recognition. An open-access multimodal HAR dataset named UP-Fall detection dataset is utilized in experiments and evaluations to measure the performance of the developed fusion architecture. Finally, we deployed an Internet of Things (IoT) system to test the proposed fusion network in real-world smart healthcare application scenarios. The findings from the experimental results reveal that the developed multimodal HAR framework surpasses the existing state-of-the-art methods in terms of multiple performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
Ma完成签到,获得积分20
1秒前
1秒前
Caroline发布了新的文献求助10
2秒前
3秒前
3秒前
儒雅的涵柏完成签到,获得积分10
4秒前
Yn发布了新的文献求助10
4秒前
4秒前
v111发布了新的文献求助20
5秒前
Ma发布了新的文献求助30
5秒前
5秒前
幻雨翎完成签到,获得积分10
5秒前
NCS发布了新的文献求助10
5秒前
6秒前
阿庆发布了新的文献求助10
6秒前
心态完成签到,获得积分10
7秒前
dxh发布了新的文献求助10
7秒前
龙猪发布了新的文献求助10
8秒前
8秒前
8秒前
富兰克林完成签到,获得积分20
8秒前
kiwi发布了新的文献求助10
9秒前
9秒前
笔记本发布了新的文献求助10
10秒前
大个应助咖啡本咖采纳,获得10
12秒前
ʚᵗᑋᵃᐢᵏ ᵞᵒᵘɞ完成签到,获得积分10
12秒前
魔幻嚓茶发布了新的文献求助10
13秒前
德鲁梦雨完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
阿庆完成签到,获得积分10
17秒前
Yn完成签到,获得积分20
18秒前
思源应助俭朴思卉采纳,获得10
18秒前
100发布了新的文献求助10
18秒前
18秒前
最初的梦想完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306683
求助须知:如何正确求助?哪些是违规求助? 2940486
关于积分的说明 8497187
捐赠科研通 2614678
什么是DOI,文献DOI怎么找? 1428354
科研通“疑难数据库(出版商)”最低求助积分说明 663427
邀请新用户注册赠送积分活动 648259