Multi-level feature fusion for multimodal human activity recognition in Internet of Healthcare Things

计算机科学 卷积神经网络 活动识别 可穿戴计算机 特征(语言学) 人工智能 传感器融合 模态(人机交互) 可靠性(半导体) 深度学习 模式识别(心理学) 机器学习 嵌入式系统 量子力学 语言学 物理 哲学 功率(物理)
作者
Md. Milon Islam,Sheikh Nooruddin,Fakhri Karray,Ghulam Muhammad
出处
期刊:Information Fusion [Elsevier BV]
卷期号:94: 17-31 被引量:86
标识
DOI:10.1016/j.inffus.2023.01.015
摘要

Human Activity Recognition (HAR) has become a crucial element for smart healthcare applications due to the fast adoption of wearable sensors and mobile technologies. Most of the existing human activity recognition frameworks deal with a single modality of data that degrades the reliability and recognition accuracy of the system for heterogeneous data sources. In this article, we propose a multi-level feature fusion technique for multimodal human activity recognition using multi-head Convolutional Neural Network (CNN) with Convolution Block Attention Module (CBAM) to process the visual data and Convolutional Long Short Term Memory (ConvLSTM) for dealing with the time-sensitive multi-source sensor information. The architecture is developed to be able to analyze and retrieve channel and spatial dimension features through the use of three branches of CNN along with CBAM for visual information. The ConvLSTM network is designed to capture temporal features from the multiple sensors’ time-series data for efficient activity recognition. An open-access multimodal HAR dataset named UP-Fall detection dataset is utilized in experiments and evaluations to measure the performance of the developed fusion architecture. Finally, we deployed an Internet of Things (IoT) system to test the proposed fusion network in real-world smart healthcare application scenarios. The findings from the experimental results reveal that the developed multimodal HAR framework surpasses the existing state-of-the-art methods in terms of multiple performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
大方忆秋完成签到 ,获得积分10
2秒前
2秒前
邱寒烟aa完成签到 ,获得积分0
2秒前
3秒前
芝芝为荔枝完成签到,获得积分20
3秒前
完美世界应助sunzhuxi采纳,获得10
5秒前
7秒前
神勇的晟睿完成签到 ,获得积分10
8秒前
共享精神应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
fancynancy应助科研通管家采纳,获得30
9秒前
gzf213完成签到,获得积分10
10秒前
11秒前
鑫渊完成签到,获得积分10
13秒前
甜甜千兰完成签到 ,获得积分10
14秒前
djiwisksk66应助轻舞飞扬采纳,获得10
15秒前
16秒前
16秒前
16秒前
yifei完成签到,获得积分10
17秒前
洛阳官人完成签到,获得积分10
19秒前
20秒前
hcmsaobang2001完成签到,获得积分10
22秒前
sunzhuxi发布了新的文献求助10
23秒前
哭泣的俊驰完成签到,获得积分10
23秒前
一与余完成签到,获得积分10
23秒前
吉吉完成签到,获得积分10
24秒前
manman完成签到,获得积分10
24秒前
24秒前
24秒前
27秒前
MchemG应助可耐的思枫采纳,获得20
28秒前
林子青发布了新的文献求助10
29秒前
Rigel发布了新的文献求助10
30秒前
30秒前
华仔应助乐观的小熊猫采纳,获得10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993