Multi-level feature fusion for multimodal human activity recognition in Internet of Healthcare Things

计算机科学 卷积神经网络 活动识别 可穿戴计算机 特征(语言学) 人工智能 传感器融合 模态(人机交互) 可靠性(半导体) 深度学习 模式识别(心理学) 机器学习 嵌入式系统 量子力学 语言学 物理 哲学 功率(物理)
作者
Md. Milon Islam,Sheikh Nooruddin,Fakhri Karray,Ghulam Muhammad
出处
期刊:Information Fusion [Elsevier]
卷期号:94: 17-31 被引量:86
标识
DOI:10.1016/j.inffus.2023.01.015
摘要

Human Activity Recognition (HAR) has become a crucial element for smart healthcare applications due to the fast adoption of wearable sensors and mobile technologies. Most of the existing human activity recognition frameworks deal with a single modality of data that degrades the reliability and recognition accuracy of the system for heterogeneous data sources. In this article, we propose a multi-level feature fusion technique for multimodal human activity recognition using multi-head Convolutional Neural Network (CNN) with Convolution Block Attention Module (CBAM) to process the visual data and Convolutional Long Short Term Memory (ConvLSTM) for dealing with the time-sensitive multi-source sensor information. The architecture is developed to be able to analyze and retrieve channel and spatial dimension features through the use of three branches of CNN along with CBAM for visual information. The ConvLSTM network is designed to capture temporal features from the multiple sensors’ time-series data for efficient activity recognition. An open-access multimodal HAR dataset named UP-Fall detection dataset is utilized in experiments and evaluations to measure the performance of the developed fusion architecture. Finally, we deployed an Internet of Things (IoT) system to test the proposed fusion network in real-world smart healthcare application scenarios. The findings from the experimental results reveal that the developed multimodal HAR framework surpasses the existing state-of-the-art methods in terms of multiple performance metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
博ge发布了新的文献求助10
1秒前
2秒前
葶儿发布了新的文献求助10
2秒前
hgcyp完成签到,获得积分10
7秒前
ysh完成签到,获得积分10
7秒前
7秒前
9秒前
9秒前
10秒前
wang完成签到,获得积分10
11秒前
Jzhang应助Yimim采纳,获得10
12秒前
沐风发布了新的文献求助20
13秒前
汉关发布了新的文献求助10
15秒前
15秒前
葶儿完成签到,获得积分10
15秒前
安详中蓝完成签到 ,获得积分10
16秒前
呆萌士晋发布了新的文献求助10
16秒前
16秒前
18秒前
呆头发布了新的文献求助10
20秒前
若水发布了新的文献求助200
21秒前
21秒前
22秒前
子川发布了新的文献求助10
22秒前
大头娃娃没下巴完成签到,获得积分10
24秒前
liyuchen完成签到,获得积分10
24秒前
CipherSage应助Lxxx_7采纳,获得10
25秒前
烟花应助永远少年采纳,获得10
25秒前
meng发布了新的文献求助10
27秒前
科研通AI5应助贪吃的猴子采纳,获得10
29秒前
29秒前
可爱的彩虹完成签到,获得积分10
29秒前
小确幸完成签到,获得积分10
29秒前
彭于晏应助毛毛虫采纳,获得10
30秒前
LilyChen完成签到 ,获得积分10
30秒前
Owen应助Su采纳,获得10
30秒前
30秒前
30秒前
31秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824