Attack Graph Model for Cyber-Physical Power Systems using Hybrid Deep Learning

计算机科学 形势意识 深度学习 异常检测 人工智能 电力系统 信息物理系统 实时计算 数据挖掘 功率(物理) 工程类 量子力学 操作系统 物理 航空航天工程
作者
Alfan Presekal,Alexandru Stefanov,Vetrivel Subramaniam Rajkumar,Peter Palensky
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tsg.2023.3237011
摘要

Electrical power grids are vulnerable to cyber attacks, as seen in Ukraine in 2015 and 2016. However, existing attack detection methods are limited. Most of them are based on power system measurement anomalies that occur when an attack is successfully executed at the later stages of the cyber kill chain. In contrast, the attacks on the Ukrainian power grid show the importance of system-wide, early-stage attack detection through communication-based anomalies. Therefore, in this paper, we propose a novel method for online cyber attack situational awareness that enhances the power grid resilience. It supports power system operators in the identification and localization of active attack locations in Operational Technology (OT) networks in near real-time. The proposed method employs a hybrid deep learning model of Graph Convolutional Long Short-Term Memory (GC-LSTM) and a deep convolutional network for time series classification-based anomaly detection. It is implemented as a combination of software defined networking, anomaly detection in communication throughput, and a novel attack graph model. Results indicate that the proposed method can identify active attack locations, e.g., within substations, control center, and wide area network, with an accuracy above 96%. Hence, it outperforms existing state-of-the-art deep learning-based time series classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
飘逸的续关注了科研通微信公众号
1秒前
wanci应助研友_Lpawrn采纳,获得10
2秒前
烟花应助研友_Lpawrn采纳,获得10
2秒前
2秒前
小二郎应助研友_Lpawrn采纳,获得10
2秒前
bkagyin应助研友_Lpawrn采纳,获得10
2秒前
酱紫完成签到,获得积分10
2秒前
拼搏的春子完成签到,获得积分10
2秒前
贝贝托完成签到,获得积分10
3秒前
马博的司机完成签到,获得积分10
3秒前
林夕完成签到,获得积分10
3秒前
chx2256120完成签到,获得积分10
4秒前
星辰大海应助赖床鸭采纳,获得10
4秒前
Yuan发布了新的文献求助30
5秒前
shining完成签到,获得积分10
5秒前
半颗糖完成签到,获得积分10
5秒前
cole发布了新的文献求助10
5秒前
化工渣渣发布了新的文献求助10
5秒前
黎黎完成签到,获得积分10
5秒前
Xuemin完成签到,获得积分10
5秒前
汉堡包应助股价采纳,获得10
5秒前
舟舟完成签到 ,获得积分10
6秒前
LeoYiS214完成签到,获得积分10
6秒前
SciGPT应助研友_Lpawrn采纳,获得10
6秒前
在水一方应助研友_Lpawrn采纳,获得10
6秒前
小蘑菇应助研友_Lpawrn采纳,获得10
6秒前
所所应助研友_Lpawrn采纳,获得10
6秒前
隐形曼青应助研友_Lpawrn采纳,获得10
6秒前
共享精神应助研友_Lpawrn采纳,获得10
6秒前
汉堡包应助研友_Lpawrn采纳,获得10
6秒前
852应助研友_Lpawrn采纳,获得10
6秒前
打打应助研友_Lpawrn采纳,获得10
7秒前
活力山蝶应助研友_Lpawrn采纳,获得10
7秒前
制冷剂完成签到 ,获得积分10
7秒前
finger完成签到,获得积分10
7秒前
司空元正发布了新的文献求助10
7秒前
7秒前
SnEBiotech完成签到 ,获得积分10
7秒前
小小怪完成签到 ,获得积分10
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950179
求助须知:如何正确求助?哪些是违规求助? 3495612
关于积分的说明 11077812
捐赠科研通 3226090
什么是DOI,文献DOI怎么找? 1783470
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874