Attack Graph Model for Cyber-Physical Power Systems using Hybrid Deep Learning

计算机科学 形势意识 深度学习 异常检测 人工智能 电力系统 信息物理系统 实时计算 数据挖掘 功率(物理) 工程类 量子力学 操作系统 物理 航空航天工程
作者
Alfan Presekal,Alexandru Stefanov,Vetrivel Subramaniam Rajkumar,Peter Palensky
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tsg.2023.3237011
摘要

Electrical power grids are vulnerable to cyber attacks, as seen in Ukraine in 2015 and 2016. However, existing attack detection methods are limited. Most of them are based on power system measurement anomalies that occur when an attack is successfully executed at the later stages of the cyber kill chain. In contrast, the attacks on the Ukrainian power grid show the importance of system-wide, early-stage attack detection through communication-based anomalies. Therefore, in this paper, we propose a novel method for online cyber attack situational awareness that enhances the power grid resilience. It supports power system operators in the identification and localization of active attack locations in Operational Technology (OT) networks in near real-time. The proposed method employs a hybrid deep learning model of Graph Convolutional Long Short-Term Memory (GC-LSTM) and a deep convolutional network for time series classification-based anomaly detection. It is implemented as a combination of software defined networking, anomaly detection in communication throughput, and a novel attack graph model. Results indicate that the proposed method can identify active attack locations, e.g., within substations, control center, and wide area network, with an accuracy above 96%. Hence, it outperforms existing state-of-the-art deep learning-based time series classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
淞淞于我完成签到 ,获得积分10
15秒前
闪闪小小完成签到 ,获得积分10
17秒前
单纯的小土豆完成签到 ,获得积分10
25秒前
wBw完成签到,获得积分0
35秒前
Young完成签到 ,获得积分10
36秒前
数乱了梨花完成签到 ,获得积分0
37秒前
阳光溪流完成签到 ,获得积分10
45秒前
50秒前
shacodow完成签到,获得积分10
53秒前
ll完成签到,获得积分10
1分钟前
瞿人雄完成签到,获得积分10
1分钟前
没心没肺完成签到,获得积分10
1分钟前
1002SHIB完成签到,获得积分10
1分钟前
nihaolaojiu完成签到,获得积分10
1分钟前
sheetung完成签到,获得积分10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
wlscj应助科研通管家采纳,获得20
1分钟前
麦田麦兜完成签到,获得积分10
1分钟前
司连喜完成签到,获得积分10
1分钟前
波西米亚完成签到,获得积分10
1分钟前
顺利毕业完成签到 ,获得积分10
1分钟前
S.S.N完成签到 ,获得积分10
1分钟前
orixero应助乐观海云采纳,获得30
1分钟前
小欣子完成签到 ,获得积分10
1分钟前
w婷完成签到 ,获得积分10
1分钟前
专注的觅云完成签到 ,获得积分10
1分钟前
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
庄怀逸完成签到 ,获得积分10
1分钟前
乐观海云发布了新的文献求助30
1分钟前
花花完成签到 ,获得积分10
1分钟前
果酱发布了新的文献求助10
1分钟前
lkc完成签到,获得积分10
1分钟前
取法乎上完成签到 ,获得积分10
1分钟前
943034197完成签到,获得积分10
2分钟前
yy完成签到 ,获得积分0
2分钟前
orixero应助果酱采纳,获得10
2分钟前
沉沉完成签到 ,获得积分0
2分钟前
一剑白完成签到 ,获得积分10
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347381
求助须知:如何正确求助?哪些是违规求助? 4481679
关于积分的说明 13947989
捐赠科研通 4379900
什么是DOI,文献DOI怎么找? 2406682
邀请新用户注册赠送积分活动 1399221
关于科研通互助平台的介绍 1372293