Multilevel Heterogeneous Domain Adaptation Method for Remote Sensing Image Segmentation

计算机科学 分割 领域(数学分析) 一致性(知识库) 域适应 领域(数学) 图像分割 特征(语言学) 人工智能 适应(眼睛) 遥感 数据挖掘 模式识别(心理学) 地理 分类器(UML) 光学 物理 数学分析 哲学 纯数学 语言学 数学
作者
Chenbin Liang,Bo Cheng,Baihua Xiao,Yunyun Dong,Jinfen Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:6
标识
DOI:10.1109/tgrs.2023.3236957
摘要

Due to more abundant data sources, more various objects of interest, and more time-consuming annotations, there is a large amount of out-of-distribution (OOD) data in the remote sensing field, on which the performance of high-accuracy image segmentation models trained under ideal experimental conditions generally degrades dramatically. Domain adaptation (DA) consequently comes into being, which aims to learn the predictor for the label-scarce target domain of interest with the help of the label-sufficient source domain in the presence of the distribution difference, namely, domain shift, between the two domains. However, the off-the-shelf DA methods for image segmentation not only struggle to cope with the more complex domain shift problems in remote sensing imagery but also almost cannot process heterogeneous data directly without information loss. While the current heterogeneous DA methods mostly still rely on some supervision information from the target domain, which is typically inaccessible in the real world. To overcome these drawbacks, we propose the multilevel heterogeneous unsupervised DA (UDA) method, termed MHDA, which unifies the instance-level DA based on cycle consistency, the feature-level DA based on contrastive learning, and the decision-level DA based on task consistency into a framework to more effectively handle the complex domain shift and heterogeneous data. After that, extensive DA experiments are conducted on the International Society for Photogrammetry and Remote Sensing (ISPRS) dataset, the BigCity dataset constructed by ourselves, and the Wuhan University (WHU) dataset, to explore the effect of each module in MHDA, the necessity of heterogeneous DA, and the effectiveness of multilevel DA. And the results demonstrate that MHDA can achieve superior performance on the remote sensing image segmentation task, compared with several state-of-the-art DA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dh完成签到,获得积分10
1秒前
岩墩墩完成签到,获得积分10
2秒前
克姑美完成签到 ,获得积分10
5秒前
pangao完成签到,获得积分10
5秒前
ysssbq完成签到,获得积分10
7秒前
8秒前
上好佳完成签到 ,获得积分10
8秒前
大模型应助Yeong采纳,获得10
9秒前
量子星尘发布了新的文献求助30
9秒前
10秒前
123完成签到,获得积分10
10秒前
谢陈完成签到 ,获得积分10
11秒前
lilili完成签到,获得积分10
12秒前
13秒前
xiaoying发布了新的文献求助10
13秒前
SciGPT应助Eric_Liuzy采纳,获得10
14秒前
liu完成签到 ,获得积分10
14秒前
qixiaoqi发布了新的文献求助10
15秒前
16秒前
A溶大美噶发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
19秒前
20秒前
kevin发布了新的文献求助10
20秒前
满意的初南完成签到 ,获得积分10
21秒前
橙橙橙发布了新的文献求助10
21秒前
万能图书馆应助EVEN采纳,获得10
21秒前
21秒前
Yeong发布了新的文献求助10
22秒前
范先生发布了新的文献求助10
23秒前
disciple完成签到,获得积分10
24秒前
沉默凌寒完成签到,获得积分10
24秒前
cc完成签到,获得积分10
24秒前
25秒前
糖豆完成签到,获得积分10
25秒前
smottom完成签到,获得积分0
26秒前
贰鸟完成签到,获得积分0
26秒前
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048