Multilevel Heterogeneous Domain Adaptation Method for Remote Sensing Image Segmentation

计算机科学 分割 领域(数学分析) 一致性(知识库) 域适应 领域(数学) 图像分割 特征(语言学) 人工智能 适应(眼睛) 遥感 数据挖掘 模式识别(心理学) 地理 分类器(UML) 光学 物理 数学分析 哲学 纯数学 语言学 数学
作者
Chenbin Liang,Bo Cheng,Baihua Xiao,Yunyun Dong,Jinfen Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:6
标识
DOI:10.1109/tgrs.2023.3236957
摘要

Due to more abundant data sources, more various objects of interest, and more time-consuming annotations, there is a large amount of out-of-distribution (OOD) data in the remote sensing field, on which the performance of high-accuracy image segmentation models trained under ideal experimental conditions generally degrades dramatically. Domain adaptation (DA) consequently comes into being, which aims to learn the predictor for the label-scarce target domain of interest with the help of the label-sufficient source domain in the presence of the distribution difference, namely, domain shift, between the two domains. However, the off-the-shelf DA methods for image segmentation not only struggle to cope with the more complex domain shift problems in remote sensing imagery but also almost cannot process heterogeneous data directly without information loss. While the current heterogeneous DA methods mostly still rely on some supervision information from the target domain, which is typically inaccessible in the real world. To overcome these drawbacks, we propose the multilevel heterogeneous unsupervised DA (UDA) method, termed MHDA, which unifies the instance-level DA based on cycle consistency, the feature-level DA based on contrastive learning, and the decision-level DA based on task consistency into a framework to more effectively handle the complex domain shift and heterogeneous data. After that, extensive DA experiments are conducted on the International Society for Photogrammetry and Remote Sensing (ISPRS) dataset, the BigCity dataset constructed by ourselves, and the Wuhan University (WHU) dataset, to explore the effect of each module in MHDA, the necessity of heterogeneous DA, and the effectiveness of multilevel DA. And the results demonstrate that MHDA can achieve superior performance on the remote sensing image segmentation task, compared with several state-of-the-art DA methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mrchen发布了新的文献求助10
1秒前
1秒前
1秒前
浮游应助成就的蓝采纳,获得10
2秒前
科目三应助畸你太美采纳,获得10
2秒前
啸西风完成签到,获得积分10
2秒前
2秒前
2秒前
xunzhi完成签到 ,获得积分10
3秒前
汉堡包应助ember采纳,获得10
3秒前
刻苦山柳完成签到,获得积分10
3秒前
YANG发布了新的文献求助10
3秒前
子车茗应助npccc采纳,获得20
4秒前
思源应助泷生采纳,获得10
4秒前
嬴政飞发布了新的文献求助10
4秒前
5秒前
5秒前
David发布了新的文献求助10
5秒前
llll发布了新的文献求助10
5秒前
5秒前
善学以致用应助ZYF采纳,获得10
6秒前
传奇3应助好运来好运来采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
feng发布了新的文献求助10
6秒前
向日葵完成签到 ,获得积分20
7秒前
7秒前
7秒前
善学以致用应助JIA采纳,获得10
7秒前
zhanghu完成签到,获得积分10
7秒前
LL完成签到,获得积分20
7秒前
插秧露娜发布了新的文献求助10
8秒前
8秒前
陈谨诺完成签到,获得积分10
8秒前
Owen应助冷酷严青采纳,获得10
9秒前
小暴完成签到,获得积分10
9秒前
9秒前
兰兰关注了科研通微信公众号
10秒前
PhD-SCAU完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576645
求助须知:如何正确求助?哪些是违规求助? 4662026
关于积分的说明 14739107
捐赠科研通 4602583
什么是DOI,文献DOI怎么找? 2525877
邀请新用户注册赠送积分活动 1495813
关于科研通互助平台的介绍 1465448