已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multilevel Heterogeneous Domain Adaptation Method for Remote Sensing Image Segmentation

计算机科学 分割 领域(数学分析) 一致性(知识库) 域适应 领域(数学) 图像分割 特征(语言学) 人工智能 适应(眼睛) 遥感 数据挖掘 模式识别(心理学) 地理 分类器(UML) 光学 物理 数学分析 哲学 纯数学 语言学 数学
作者
Chenbin Liang,Bo Cheng,Baihua Xiao,Yunyun Dong,Jinfen Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:6
标识
DOI:10.1109/tgrs.2023.3236957
摘要

Due to more abundant data sources, more various objects of interest, and more time-consuming annotations, there is a large amount of out-of-distribution (OOD) data in the remote sensing field, on which the performance of high-accuracy image segmentation models trained under ideal experimental conditions generally degrades dramatically. Domain adaptation (DA) consequently comes into being, which aims to learn the predictor for the label-scarce target domain of interest with the help of the label-sufficient source domain in the presence of the distribution difference, namely, domain shift, between the two domains. However, the off-the-shelf DA methods for image segmentation not only struggle to cope with the more complex domain shift problems in remote sensing imagery but also almost cannot process heterogeneous data directly without information loss. While the current heterogeneous DA methods mostly still rely on some supervision information from the target domain, which is typically inaccessible in the real world. To overcome these drawbacks, we propose the multilevel heterogeneous unsupervised DA (UDA) method, termed MHDA, which unifies the instance-level DA based on cycle consistency, the feature-level DA based on contrastive learning, and the decision-level DA based on task consistency into a framework to more effectively handle the complex domain shift and heterogeneous data. After that, extensive DA experiments are conducted on the International Society for Photogrammetry and Remote Sensing (ISPRS) dataset, the BigCity dataset constructed by ourselves, and the Wuhan University (WHU) dataset, to explore the effect of each module in MHDA, the necessity of heterogeneous DA, and the effectiveness of multilevel DA. And the results demonstrate that MHDA can achieve superior performance on the remote sensing image segmentation task, compared with several state-of-the-art DA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵的忆梅完成签到 ,获得积分10
1秒前
1秒前
我要向阳而生完成签到 ,获得积分10
1秒前
芽芽鸭完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
芽芽鸭发布了新的文献求助10
6秒前
敏感的雨寒关注了科研通微信公众号
6秒前
mm发布了新的文献求助10
6秒前
6秒前
6秒前
easy发布了新的文献求助20
6秒前
左鞅发布了新的文献求助10
8秒前
9秒前
9秒前
xio完成签到,获得积分20
10秒前
10秒前
Sylvie完成签到,获得积分10
10秒前
白板发布了新的文献求助10
11秒前
阿哈发布了新的文献求助10
11秒前
星熠完成签到,获得积分10
12秒前
closer完成签到 ,获得积分10
12秒前
打打应助芽芽鸭采纳,获得10
13秒前
charles发布了新的文献求助10
15秒前
15秒前
CHEN完成签到 ,获得积分10
15秒前
aaa发布了新的文献求助10
15秒前
xio发布了新的文献求助10
16秒前
菜鸟队长完成签到 ,获得积分10
17秒前
17秒前
鳗鱼涵易发布了新的文献求助10
17秒前
18秒前
aaaabc完成签到 ,获得积分10
18秒前
jf完成签到 ,获得积分10
19秒前
好哇发布了新的文献求助10
19秒前
charles完成签到,获得积分20
20秒前
QQQQQQQQQ完成签到 ,获得积分10
21秒前
21秒前
张三关注了科研通微信公众号
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462799
求助须知:如何正确求助?哪些是违规求助? 4567554
关于积分的说明 14310837
捐赠科研通 4493410
什么是DOI,文献DOI怎么找? 2461607
邀请新用户注册赠送积分活动 1450711
关于科研通互助平台的介绍 1425919