Multilevel Heterogeneous Domain Adaptation Method for Remote Sensing Image Segmentation

计算机科学 分割 领域(数学分析) 一致性(知识库) 域适应 领域(数学) 图像分割 特征(语言学) 人工智能 适应(眼睛) 遥感 数据挖掘 模式识别(心理学) 地理 分类器(UML) 光学 物理 数学分析 哲学 纯数学 语言学 数学
作者
Chenbin Liang,Bo Cheng,Baihua Xiao,Yunyun Dong,Jinfen Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:6
标识
DOI:10.1109/tgrs.2023.3236957
摘要

Due to more abundant data sources, more various objects of interest, and more time-consuming annotations, there is a large amount of out-of-distribution (OOD) data in the remote sensing field, on which the performance of high-accuracy image segmentation models trained under ideal experimental conditions generally degrades dramatically. Domain adaptation (DA) consequently comes into being, which aims to learn the predictor for the label-scarce target domain of interest with the help of the label-sufficient source domain in the presence of the distribution difference, namely, domain shift, between the two domains. However, the off-the-shelf DA methods for image segmentation not only struggle to cope with the more complex domain shift problems in remote sensing imagery but also almost cannot process heterogeneous data directly without information loss. While the current heterogeneous DA methods mostly still rely on some supervision information from the target domain, which is typically inaccessible in the real world. To overcome these drawbacks, we propose the multilevel heterogeneous unsupervised DA (UDA) method, termed MHDA, which unifies the instance-level DA based on cycle consistency, the feature-level DA based on contrastive learning, and the decision-level DA based on task consistency into a framework to more effectively handle the complex domain shift and heterogeneous data. After that, extensive DA experiments are conducted on the International Society for Photogrammetry and Remote Sensing (ISPRS) dataset, the BigCity dataset constructed by ourselves, and the Wuhan University (WHU) dataset, to explore the effect of each module in MHDA, the necessity of heterogeneous DA, and the effectiveness of multilevel DA. And the results demonstrate that MHDA can achieve superior performance on the remote sensing image segmentation task, compared with several state-of-the-art DA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
易儿完成签到,获得积分10
1秒前
2秒前
斯文败类应助青野采纳,获得10
3秒前
4秒前
5秒前
5秒前
lulu8809完成签到,获得积分10
5秒前
胡图图完成签到,获得积分10
6秒前
张天宝真的爱科研完成签到,获得积分10
6秒前
SYLH应助wit采纳,获得20
6秒前
高高的蓝天完成签到 ,获得积分10
7秒前
云横秦岭家何在完成签到,获得积分10
7秒前
9秒前
凌代萱完成签到 ,获得积分10
9秒前
10秒前
10秒前
mmm完成签到,获得积分20
13秒前
powell应助喜喵喵采纳,获得10
14秒前
高手发布了新的文献求助10
14秒前
15秒前
gsq发布了新的文献求助30
16秒前
17秒前
香蕉妙菱发布了新的文献求助10
18秒前
深情安青应助wwwstt采纳,获得10
19秒前
易酰水烊酸应助苏苏采纳,获得10
20秒前
20秒前
21秒前
英姑应助小刘采纳,获得10
21秒前
李彪发布了新的文献求助30
21秒前
开心每一天完成签到 ,获得积分10
22秒前
星辰大海应助高手采纳,获得10
22秒前
温柔的姿完成签到,获得积分10
23秒前
传奇3应助gj采纳,获得10
28秒前
XYX关闭了XYX文献求助
36秒前
曲奇吐司完成签到,获得积分10
40秒前
FashionBoy应助Sijie采纳,获得10
42秒前
dong应助夏木夏采纳,获得10
43秒前
美好二娘完成签到 ,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136