Multilevel Heterogeneous Domain Adaptation Method for Remote Sensing Image Segmentation

计算机科学 分割 领域(数学分析) 一致性(知识库) 域适应 领域(数学) 图像分割 特征(语言学) 人工智能 适应(眼睛) 遥感 数据挖掘 模式识别(心理学) 地理 分类器(UML) 光学 物理 数学分析 哲学 纯数学 语言学 数学
作者
Chenbin Liang,Bo Cheng,Baihua Xiao,Yunyun Dong,Jinfen Chen
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:6
标识
DOI:10.1109/tgrs.2023.3236957
摘要

Due to more abundant data sources, more various objects of interest, and more time-consuming annotations, there is a large amount of out-of-distribution (OOD) data in the remote sensing field, on which the performance of high-accuracy image segmentation models trained under ideal experimental conditions generally degrades dramatically. Domain adaptation (DA) consequently comes into being, which aims to learn the predictor for the label-scarce target domain of interest with the help of the label-sufficient source domain in the presence of the distribution difference, namely, domain shift, between the two domains. However, the off-the-shelf DA methods for image segmentation not only struggle to cope with the more complex domain shift problems in remote sensing imagery but also almost cannot process heterogeneous data directly without information loss. While the current heterogeneous DA methods mostly still rely on some supervision information from the target domain, which is typically inaccessible in the real world. To overcome these drawbacks, we propose the multilevel heterogeneous unsupervised DA (UDA) method, termed MHDA, which unifies the instance-level DA based on cycle consistency, the feature-level DA based on contrastive learning, and the decision-level DA based on task consistency into a framework to more effectively handle the complex domain shift and heterogeneous data. After that, extensive DA experiments are conducted on the International Society for Photogrammetry and Remote Sensing (ISPRS) dataset, the BigCity dataset constructed by ourselves, and the Wuhan University (WHU) dataset, to explore the effect of each module in MHDA, the necessity of heterogeneous DA, and the effectiveness of multilevel DA. And the results demonstrate that MHDA can achieve superior performance on the remote sensing image segmentation task, compared with several state-of-the-art DA methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
合适的小海豚完成签到,获得积分10
1秒前
4892完成签到 ,获得积分10
1秒前
3秒前
Hao完成签到,获得积分10
3秒前
yinyin发布了新的文献求助10
4秒前
4秒前
5秒前
天天快乐应助王锦鹏采纳,获得10
5秒前
5秒前
5秒前
5秒前
non发布了新的文献求助50
5秒前
6秒前
6秒前
hygge完成签到,获得积分20
7秒前
白小白完成签到,获得积分10
7秒前
费老五发布了新的文献求助10
7秒前
徐yy完成签到 ,获得积分10
8秒前
柳絮发布了新的文献求助10
9秒前
10秒前
单薄靖儿发布了新的文献求助20
10秒前
科研通AI6应助小白小白鼠采纳,获得30
10秒前
10秒前
科研通AI6应助qweqdsa采纳,获得10
11秒前
12秒前
ML发布了新的文献求助10
12秒前
13秒前
田様应助hygge采纳,获得10
13秒前
14秒前
在水一方应助卡卡采纳,获得10
14秒前
汉堡包发布了新的文献求助10
14秒前
15秒前
Magic发布了新的文献求助10
15秒前
小马完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532279
求助须知:如何正确求助?哪些是违规求助? 4621012
关于积分的说明 14576204
捐赠科研通 4560859
什么是DOI,文献DOI怎么找? 2498989
邀请新用户注册赠送积分活动 1478948
关于科研通互助平台的介绍 1450218