Defect-aware transformer network for intelligent visual surface defect detection

变压器 计算机科学 人工智能 编码器 工程类 数据挖掘 电压 电气工程 操作系统
作者
Hongbing Shang,Chuang Sun,Jinxin Liu,Xuefeng Chen,Ruqiang Yan
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:55: 101882-101882 被引量:64
标识
DOI:10.1016/j.aei.2023.101882
摘要

Surface defect detection plays an increasing role in intelligent manufacturing and product life-cycle management, such as quality inspection, process monitoring, and preventive maintenance. The existing intelligent methods almost adopt convolution architecture, and the limited receptive field hinders performance improvement of defect detection. In general, a larger receptive field can bring richer contextual information, resulting in better performance. Although operations such as dilated convolution can expand the receptive field, this improvement is still limited. Recently, benefitting from the ability to model long-range dependencies, Transformer-based models achieve great success in computer vision and image processing. However, applying Transformer-based models without modification is not desirable because there is no awareness and pertinence to defects. In this paper, an intelligent method is proposed by using defect-aware Transformer network (DAT-Net). In DAT-Net, Transformer replaces convolution in encoder to overcome the difficulty of modeling long-range dependencies. Defect-aware module assembled by basic weight matrixes is incorporated into Transformer to perceive and capture geometry and characteristic of defect. Graph position encoding by constructing a dynamic graph on tokens is designed to provide auxiliary positional information, which brings desired improved performance and fine adaptability. Specially, we carry out field experiments and painstakingly construct blade defect and tool wear datasets to compare DAT-Net with other methods. The comprehensive experiments demonstrate that DAT-Net has superior performance with 90.19 mIoU on blade defect dataset and 87.24 mIoU on tool wear dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
只想睡大觉完成签到,获得积分10
2秒前
晋击的小徐完成签到,获得积分10
3秒前
4秒前
时聿完成签到,获得积分10
7秒前
科研通AI5应助猪猪hero采纳,获得10
7秒前
8秒前
chen完成签到,获得积分10
10秒前
健忘的白云完成签到 ,获得积分10
12秒前
完美世界应助super chan采纳,获得10
19秒前
21秒前
留胡子的乐蓉完成签到,获得积分10
24秒前
咕噜噜发布了新的文献求助10
25秒前
孔难破完成签到,获得积分10
26秒前
zho应助小赵小赵采纳,获得10
27秒前
28秒前
maox1aoxin应助冷傲的诗兰采纳,获得30
30秒前
欲望被鬼应助玛卡巴卡采纳,获得20
30秒前
fqy发布了新的文献求助10
32秒前
32秒前
鸠摩智完成签到,获得积分10
32秒前
华仔应助lxqd1采纳,获得10
33秒前
feihu发布了新的文献求助10
36秒前
蓝桉完成签到 ,获得积分10
38秒前
38秒前
隐形曼青应助杋困了采纳,获得10
38秒前
41秒前
42秒前
ccc发布了新的文献求助10
43秒前
劲秉应助LXY采纳,获得20
45秒前
46秒前
gzj关闭了gzj文献求助
46秒前
研友_5Z4ZA5发布了新的文献求助10
47秒前
辞忧发布了新的文献求助10
47秒前
48秒前
付理想发布了新的文献求助10
52秒前
万能图书馆应助啊宁采纳,获得10
55秒前
科研通AI5应助yang采纳,获得30
55秒前
cy32522关注了科研通微信公众号
55秒前
辞忧完成签到,获得积分10
56秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673597
求助须知:如何正确求助?哪些是违规求助? 3229144
关于积分的说明 9784321
捐赠科研通 2939733
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760896
科研通“疑难数据库(出版商)”最低求助积分说明 736307