Defect-aware transformer network for intelligent visual surface defect detection

变压器 计算机科学 人工智能 编码器 工程类 数据挖掘 电压 电气工程 操作系统
作者
Hongbing Shang,Chuang Sun,Jinxin Liu,Xuefeng Chen,Ruqiang Yan
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:55: 101882-101882 被引量:118
标识
DOI:10.1016/j.aei.2023.101882
摘要

Surface defect detection plays an increasing role in intelligent manufacturing and product life-cycle management, such as quality inspection, process monitoring, and preventive maintenance. The existing intelligent methods almost adopt convolution architecture, and the limited receptive field hinders performance improvement of defect detection. In general, a larger receptive field can bring richer contextual information, resulting in better performance. Although operations such as dilated convolution can expand the receptive field, this improvement is still limited. Recently, benefitting from the ability to model long-range dependencies, Transformer-based models achieve great success in computer vision and image processing. However, applying Transformer-based models without modification is not desirable because there is no awareness and pertinence to defects. In this paper, an intelligent method is proposed by using defect-aware Transformer network (DAT-Net). In DAT-Net, Transformer replaces convolution in encoder to overcome the difficulty of modeling long-range dependencies. Defect-aware module assembled by basic weight matrixes is incorporated into Transformer to perceive and capture geometry and characteristic of defect. Graph position encoding by constructing a dynamic graph on tokens is designed to provide auxiliary positional information, which brings desired improved performance and fine adaptability. Specially, we carry out field experiments and painstakingly construct blade defect and tool wear datasets to compare DAT-Net with other methods. The comprehensive experiments demonstrate that DAT-Net has superior performance with 90.19 mIoU on blade defect dataset and 87.24 mIoU on tool wear dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DaisyRong完成签到,获得积分10
刚刚
1秒前
小二郎应助彩色行天采纳,获得200
1秒前
2秒前
爱吃饼干的土拨鼠完成签到,获得积分10
4秒前
科研小白兔完成签到,获得积分10
5秒前
tiezhu完成签到,获得积分10
5秒前
ferritin完成签到 ,获得积分10
5秒前
汪汪完成签到,获得积分10
5秒前
6秒前
YJ888发布了新的文献求助10
6秒前
枫叶随想完成签到,获得积分10
6秒前
zmy关闭了zmy文献求助
10秒前
fengzi151完成签到 ,获得积分10
10秒前
烟花应助唠叨的冥王星采纳,获得10
10秒前
airwing完成签到,获得积分10
11秒前
12秒前
15秒前
tiezhu发布了新的文献求助10
15秒前
啊盘发布了新的文献求助10
16秒前
FashionBoy应助李微采纳,获得30
16秒前
16秒前
lmc完成签到,获得积分10
16秒前
负责的问寒完成签到,获得积分10
17秒前
taysun完成签到 ,获得积分10
18秒前
上官若男应助YJ888采纳,获得10
18秒前
秦小荷发布了新的文献求助10
19秒前
19秒前
20秒前
KK完成签到,获得积分10
20秒前
夏小舟发布了新的文献求助10
20秒前
1234发布了新的文献求助10
24秒前
酷波er应助秦小荷采纳,获得10
24秒前
24秒前
万能图书馆应助进口小宵采纳,获得10
24秒前
自觉的绿蝶完成签到,获得积分20
25秒前
吴文章完成签到 ,获得积分10
25秒前
啊盘完成签到,获得积分10
26秒前
lmc发布了新的文献求助10
27秒前
yes完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299249
求助须知:如何正确求助?哪些是违规求助? 4447475
关于积分的说明 13842802
捐赠科研通 4333098
什么是DOI,文献DOI怎么找? 2378518
邀请新用户注册赠送积分活动 1373819
关于科研通互助平台的介绍 1339343