Defect-aware transformer network for intelligent visual surface defect detection

变压器 计算机科学 人工智能 编码器 工程类 数据挖掘 电压 电气工程 操作系统
作者
Hongbing Shang,Chuang Sun,Jinxin Liu,Xuefeng Chen,Ruqiang Yan
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:55: 101882-101882 被引量:118
标识
DOI:10.1016/j.aei.2023.101882
摘要

Surface defect detection plays an increasing role in intelligent manufacturing and product life-cycle management, such as quality inspection, process monitoring, and preventive maintenance. The existing intelligent methods almost adopt convolution architecture, and the limited receptive field hinders performance improvement of defect detection. In general, a larger receptive field can bring richer contextual information, resulting in better performance. Although operations such as dilated convolution can expand the receptive field, this improvement is still limited. Recently, benefitting from the ability to model long-range dependencies, Transformer-based models achieve great success in computer vision and image processing. However, applying Transformer-based models without modification is not desirable because there is no awareness and pertinence to defects. In this paper, an intelligent method is proposed by using defect-aware Transformer network (DAT-Net). In DAT-Net, Transformer replaces convolution in encoder to overcome the difficulty of modeling long-range dependencies. Defect-aware module assembled by basic weight matrixes is incorporated into Transformer to perceive and capture geometry and characteristic of defect. Graph position encoding by constructing a dynamic graph on tokens is designed to provide auxiliary positional information, which brings desired improved performance and fine adaptability. Specially, we carry out field experiments and painstakingly construct blade defect and tool wear datasets to compare DAT-Net with other methods. The comprehensive experiments demonstrate that DAT-Net has superior performance with 90.19 mIoU on blade defect dataset and 87.24 mIoU on tool wear dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LLLLL发布了新的文献求助10
刚刚
Mic发布了新的文献求助10
刚刚
经纲完成签到 ,获得积分0
刚刚
刚刚
认真的焦完成签到,获得积分10
1秒前
2秒前
千思发布了新的文献求助10
2秒前
灵安发布了新的文献求助10
2秒前
2秒前
PeterLin完成签到,获得积分10
2秒前
夏樱完成签到,获得积分10
2秒前
vampire完成签到 ,获得积分10
3秒前
3秒前
初衷未央完成签到,获得积分10
3秒前
youngk完成签到 ,获得积分10
3秒前
3秒前
朱安南应助叶叶采纳,获得10
3秒前
上官若男应助叶叶采纳,获得10
4秒前
suesue完成签到,获得积分10
4秒前
4秒前
李四发布了新的文献求助10
4秒前
佛系少年发布了新的文献求助10
5秒前
一颗溏心蛋完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
英姑应助武丝丝采纳,获得10
6秒前
叫我富婆儿完成签到,获得积分10
6秒前
Hanoi347应助忧郁的友琴采纳,获得10
7秒前
小小完成签到 ,获得积分10
7秒前
酷波er应助清爽远锋采纳,获得30
7秒前
英姑应助夜願采纳,获得10
7秒前
7秒前
7秒前
8秒前
嘻嘻嘻完成签到,获得积分10
8秒前
CodeCraft应助家里没有猫采纳,获得10
8秒前
planto完成签到,获得积分10
8秒前
赘婿应助苏休夫采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652297
求助须知:如何正确求助?哪些是违规求助? 4787231
关于积分的说明 15059377
捐赠科研通 4810953
什么是DOI,文献DOI怎么找? 2573500
邀请新用户注册赠送积分活动 1529327
关于科研通互助平台的介绍 1488227