亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Defect-aware transformer network for intelligent visual surface defect detection

变压器 计算机科学 人工智能 编码器 工程类 数据挖掘 电压 电气工程 操作系统
作者
Hongbing Shang,Chuang Sun,Jinxin Liu,Xuefeng Chen,Ruqiang Yan
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:55: 101882-101882 被引量:118
标识
DOI:10.1016/j.aei.2023.101882
摘要

Surface defect detection plays an increasing role in intelligent manufacturing and product life-cycle management, such as quality inspection, process monitoring, and preventive maintenance. The existing intelligent methods almost adopt convolution architecture, and the limited receptive field hinders performance improvement of defect detection. In general, a larger receptive field can bring richer contextual information, resulting in better performance. Although operations such as dilated convolution can expand the receptive field, this improvement is still limited. Recently, benefitting from the ability to model long-range dependencies, Transformer-based models achieve great success in computer vision and image processing. However, applying Transformer-based models without modification is not desirable because there is no awareness and pertinence to defects. In this paper, an intelligent method is proposed by using defect-aware Transformer network (DAT-Net). In DAT-Net, Transformer replaces convolution in encoder to overcome the difficulty of modeling long-range dependencies. Defect-aware module assembled by basic weight matrixes is incorporated into Transformer to perceive and capture geometry and characteristic of defect. Graph position encoding by constructing a dynamic graph on tokens is designed to provide auxiliary positional information, which brings desired improved performance and fine adaptability. Specially, we carry out field experiments and painstakingly construct blade defect and tool wear datasets to compare DAT-Net with other methods. The comprehensive experiments demonstrate that DAT-Net has superior performance with 90.19 mIoU on blade defect dataset and 87.24 mIoU on tool wear dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰姗完成签到,获得积分10
35秒前
聪聪发布了新的文献求助10
37秒前
40秒前
Able完成签到,获得积分10
43秒前
sun发布了新的文献求助10
45秒前
1分钟前
1分钟前
Ecokarster完成签到,获得积分10
1分钟前
楚楚完成签到 ,获得积分10
1分钟前
所所应助鳄鱼不做饿梦采纳,获得50
1分钟前
111完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
田様应助郭楠楠采纳,获得30
2分钟前
3分钟前
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
郭楠楠发布了新的文献求助30
3分钟前
3分钟前
Xyyy完成签到,获得积分10
3分钟前
RED发布了新的文献求助10
4分钟前
满天星发布了新的文献求助10
4分钟前
4分钟前
郭楠楠发布了新的文献求助10
4分钟前
缨绒完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
满天星完成签到 ,获得积分10
5分钟前
zqr发布了新的文献求助10
5分钟前
Hello应助Raunio采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
abdo完成签到,获得积分10
6分钟前
kuoping完成签到,获得积分0
6分钟前
小蘑菇应助成太采纳,获得10
6分钟前
万能图书馆应助zxl采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
郭楠楠发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4861425
关于积分的说明 15107679
捐赠科研通 4823016
什么是DOI,文献DOI怎么找? 2581850
邀请新用户注册赠送积分活动 1536017
关于科研通互助平台的介绍 1494385