Defect-aware transformer network for intelligent visual surface defect detection

变压器 计算机科学 人工智能 编码器 工程类 数据挖掘 电压 电气工程 操作系统
作者
Hongbing Shang,Chuang Sun,Jinxin Liu,Xuefeng Chen,Ruqiang Yan
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:55: 101882-101882 被引量:74
标识
DOI:10.1016/j.aei.2023.101882
摘要

Surface defect detection plays an increasing role in intelligent manufacturing and product life-cycle management, such as quality inspection, process monitoring, and preventive maintenance. The existing intelligent methods almost adopt convolution architecture, and the limited receptive field hinders performance improvement of defect detection. In general, a larger receptive field can bring richer contextual information, resulting in better performance. Although operations such as dilated convolution can expand the receptive field, this improvement is still limited. Recently, benefitting from the ability to model long-range dependencies, Transformer-based models achieve great success in computer vision and image processing. However, applying Transformer-based models without modification is not desirable because there is no awareness and pertinence to defects. In this paper, an intelligent method is proposed by using defect-aware Transformer network (DAT-Net). In DAT-Net, Transformer replaces convolution in encoder to overcome the difficulty of modeling long-range dependencies. Defect-aware module assembled by basic weight matrixes is incorporated into Transformer to perceive and capture geometry and characteristic of defect. Graph position encoding by constructing a dynamic graph on tokens is designed to provide auxiliary positional information, which brings desired improved performance and fine adaptability. Specially, we carry out field experiments and painstakingly construct blade defect and tool wear datasets to compare DAT-Net with other methods. The comprehensive experiments demonstrate that DAT-Net has superior performance with 90.19 mIoU on blade defect dataset and 87.24 mIoU on tool wear dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王梽旭完成签到,获得积分20
刚刚
明天一定吃早饭完成签到,获得积分10
1秒前
醉爱星星完成签到,获得积分10
1秒前
xubee完成签到,获得积分10
1秒前
1秒前
友好的天奇完成签到 ,获得积分10
1秒前
ljjxd完成签到,获得积分10
1秒前
秀丽奎完成签到 ,获得积分10
1秒前
cold寒完成签到,获得积分10
2秒前
2秒前
汪哈七完成签到,获得积分10
3秒前
3秒前
飘逸之玉完成签到,获得积分10
3秒前
雾昂发布了新的文献求助10
5秒前
CipherSage应助不爱吃饭采纳,获得10
5秒前
汪哈七发布了新的文献求助10
5秒前
丹丹发布了新的文献求助10
5秒前
less完成签到,获得积分10
6秒前
wanci应助月之暗面采纳,获得10
6秒前
zhizhi完成签到,获得积分10
7秒前
wqkkk完成签到,获得积分10
7秒前
Feng发布了新的文献求助20
8秒前
8秒前
8秒前
情怀应助123采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
静心安逸完成签到,获得积分10
8秒前
李健的粉丝团团长应助hh采纳,获得10
9秒前
隐形曼青应助滴滴滴采纳,获得10
9秒前
任性的蝴蝶完成签到,获得积分10
9秒前
han发布了新的文献求助10
9秒前
卷卷完成签到 ,获得积分10
10秒前
10秒前
10秒前
ethen完成签到,获得积分10
11秒前
11秒前
11秒前
li完成签到 ,获得积分10
11秒前
玛丽发布了新的文献求助20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743