Defect-aware transformer network for intelligent visual surface defect detection

变压器 计算机科学 人工智能 编码器 工程类 电压 电气工程 操作系统
作者
Hongbing Shang,Chuang Sun,Jinxin Liu,Xuefeng Chen,Ruqiang Yan
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:55: 101882-101882 被引量:50
标识
DOI:10.1016/j.aei.2023.101882
摘要

Surface defect detection plays an increasing role in intelligent manufacturing and product life-cycle management, such as quality inspection, process monitoring, and preventive maintenance. The existing intelligent methods almost adopt convolution architecture, and the limited receptive field hinders performance improvement of defect detection. In general, a larger receptive field can bring richer contextual information, resulting in better performance. Although operations such as dilated convolution can expand the receptive field, this improvement is still limited. Recently, benefitting from the ability to model long-range dependencies, Transformer-based models achieve great success in computer vision and image processing. However, applying Transformer-based models without modification is not desirable because there is no awareness and pertinence to defects. In this paper, an intelligent method is proposed by using defect-aware Transformer network (DAT-Net). In DAT-Net, Transformer replaces convolution in encoder to overcome the difficulty of modeling long-range dependencies. Defect-aware module assembled by basic weight matrixes is incorporated into Transformer to perceive and capture geometry and characteristic of defect. Graph position encoding by constructing a dynamic graph on tokens is designed to provide auxiliary positional information, which brings desired improved performance and fine adaptability. Specially, we carry out field experiments and painstakingly construct blade defect and tool wear datasets to compare DAT-Net with other methods. The comprehensive experiments demonstrate that DAT-Net has superior performance with 90.19 mIoU on blade defect dataset and 87.24 mIoU on tool wear dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
臧真发布了新的文献求助10
1秒前
科研通AI2S应助重要涔雨采纳,获得10
2秒前
123发布了新的文献求助50
3秒前
风不止完成签到 ,获得积分10
6秒前
SunJc完成签到,获得积分10
6秒前
Suagy发布了新的文献求助10
8秒前
思源应助vivian26采纳,获得10
8秒前
9秒前
Eason完成签到,获得积分10
12秒前
陌陌完成签到,获得积分10
12秒前
12秒前
爆米花应助hahhh7采纳,获得10
12秒前
桐桐应助pink采纳,获得10
12秒前
14秒前
Fan完成签到,获得积分10
15秒前
honeyoko发布了新的文献求助10
17秒前
一裤子灰完成签到,获得积分10
18秒前
duo完成签到,获得积分10
18秒前
茉莉完成签到,获得积分20
19秒前
20秒前
21秒前
22秒前
今后应助LL采纳,获得10
23秒前
啦啦啦哟完成签到,获得积分10
24秒前
vivian26发布了新的文献求助10
24秒前
嗯哼应助清脆松采纳,获得20
24秒前
linxi完成签到,获得积分10
24秒前
合适的不言应助minidong采纳,获得10
24秒前
26秒前
27秒前
28秒前
564654SDA完成签到,获得积分10
29秒前
个性的紫菜应助苏航采纳,获得10
31秒前
32秒前
32秒前
GU发布了新的文献求助10
34秒前
史一帆发布了新的文献求助10
34秒前
yufanhui完成签到,获得积分0
34秒前
35秒前
36秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159909
求助须知:如何正确求助?哪些是违规求助? 2810952
关于积分的说明 7890034
捐赠科研通 2469969
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630771
版权声明 602012