Road Damages Detection and Classification using Deep Learning and UAVs

损害赔偿 计算机科学 卷积神经网络 深度学习 工作(物理) 政府(语言学) 无人机 基督教牧师 人工智能 运输工程 计算机安全 工程类 政治学 法学 机械工程 语言学 哲学 神学 生物 遗传学
作者
Mohammad Aftab Alam Khan,Mohammad Alsawwaf,Basheer Arab,Mohammed AlHashim,Faisal Almashharawi,Omran Hakami,Sunday O. Olatunji,Mehwash Farooqui,Atta Rahman
标识
DOI:10.1109/asiancon55314.2022.9909043
摘要

The Road health management is particularly important, especially for big cities and countries. Problems that occur on roads like road cracks can be extremely dangerous to drivers' and passengers' lives. In this paper, a road monitoring system is proposed to detect and classify the occurring problems on the road that happened due to obstacles, such as excavations. This work will help in repairing critical road damages faster and save people from accidents that are caused by these damages. The proposed model will detect and classify the problem related to road damage into categories (cracks, potholes, and other damages). This proposed model will be built using a deep learning technique which is convolutional neural networks (CNN). It has been found that CNN is widely used in this area and images detection and classification because it shows high performance. Numerous works have been done in this field, but it is hoped that this proposed technique will achieve better results. The proposed model will be connected with a drone, and it is linked to a web application to demonstrate the results and manage the system. Also, an announcement to government agencies such as the Ministry of Transportation or police could be sent using the web application. Theoretically, the outcomes from of this work shall demonstrate extremely reasonable findings in detecting and classifying road damages from real-time recording.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻的自行车完成签到,获得积分20
刚刚
科研通AI2S应助chensiyao采纳,获得10
刚刚
刚刚
1秒前
1秒前
luyuhao3完成签到,获得积分10
2秒前
haidayu完成签到,获得积分10
2秒前
2秒前
Qin_YY完成签到,获得积分10
3秒前
3秒前
bkagyin应助cc采纳,获得10
4秒前
派大星发布了新的文献求助10
5秒前
6秒前
wfwl发布了新的文献求助10
6秒前
满意语风完成签到,获得积分10
6秒前
kian完成签到,获得积分20
7秒前
研友_VZG7GZ应助EED采纳,获得10
7秒前
8秒前
111完成签到,获得积分10
8秒前
Mano发布了新的文献求助10
9秒前
充电宝应助charlasz采纳,获得10
9秒前
wanz完成签到,获得积分10
9秒前
zjq4302发布了新的文献求助10
10秒前
521发布了新的文献求助10
11秒前
12秒前
Etiquette完成签到 ,获得积分10
12秒前
iFan完成签到 ,获得积分10
13秒前
kian发布了新的文献求助30
13秒前
wfwl完成签到,获得积分10
13秒前
李琦发布了新的文献求助30
13秒前
Leexxxhaoo完成签到,获得积分10
14秒前
15秒前
清脆怜寒完成签到,获得积分10
15秒前
Gsyin发布了新的文献求助10
16秒前
yls123发布了新的文献求助10
18秒前
lllll发布了新的文献求助10
19秒前
19秒前
19秒前
esbd完成签到,获得积分10
19秒前
子寒发布了新的文献求助20
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992393
求助须知:如何正确求助?哪些是违规求助? 3533397
关于积分的说明 11262186
捐赠科研通 3272927
什么是DOI,文献DOI怎么找? 1805895
邀请新用户注册赠送积分活动 882792
科研通“疑难数据库(出版商)”最低求助积分说明 809474