Diversified sine–cosine algorithm based on differential evolution for multidimensional knapsack problem

背包问题 水准点(测量) 计算机科学 数学优化 趋同(经济学) 差异进化 正弦 算法 早熟收敛 最大值和最小值 人口 数学 粒子群优化 经济增长 数学分析 社会学 人口学 经济 大地测量学 地理 几何学
作者
Shubham Gupta,Rong Su,Shitu Singh
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:130: 109682-109682 被引量:14
标识
DOI:10.1016/j.asoc.2022.109682
摘要

The sine–cosine algorithm (SCA) is one of the simplest and efficient stochastic search algorithms in the field of metaheuristics. It has shown its efficacy in solving several real-life applications. However, in some cases, it shows stagnation at local optima and premature convergence issues due to low exploitation ability and insufficient diversity skills. To overcome these issues from the SCA, its enhanced version named ISCA is developed in this paper. The proposed ISCA is designed based on modifying the original search mechanism of the SCA and hybridizing it with a differential evolution (DE) algorithm. The search procedure in the ISCA switches between the modified search mechanism of the SCA and DE based on the evolutionary states of candidate solutions and a parameter called the switch parameter. The modified SCA enhances the exploitation ability and convergence speed, while the DE maintains the diversity of the population to avoid local optimal solutions. The parameters of the ISCA are tuned in such as way that they could balance the exploration and exploitation features. Validation of the ISCA is conducted on a benchmark set of 23 continuous optimization problems through different performance measures, which reveals its effectiveness as a better optimizer for continuous optimization problems. Furthermore, the proposed ISCA is extended to develop its efficient binary version named BISCA for solving multidimensional knapsack problems. A benchmark collection of 49 instances is used for the performance evaluation of the BISCA. Comparison of results produced by the BISCA with other algorithms and previous studies indicates its better search efficiency and verifies it as an effective alternative for solving the MKP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯嗯嗯哦哦哦完成签到 ,获得积分10
11秒前
17秒前
凉面完成签到 ,获得积分10
20秒前
fkdbdy发布了新的文献求助10
22秒前
科研通AI2S应助jinx采纳,获得10
23秒前
午后狂睡完成签到 ,获得积分10
24秒前
31秒前
液晶屏99完成签到,获得积分10
34秒前
38秒前
ShuY发布了新的文献求助10
41秒前
韧迹完成签到 ,获得积分0
51秒前
ShuY完成签到,获得积分10
1分钟前
mojojo完成签到 ,获得积分10
1分钟前
1分钟前
江三村完成签到 ,获得积分10
1分钟前
青山完成签到 ,获得积分10
1分钟前
千玺的小粉丝儿完成签到,获得积分10
1分钟前
wanci应助抗体药物偶联采纳,获得10
1分钟前
桐桐应助抗体药物偶联采纳,获得10
1分钟前
1分钟前
麦田麦兜完成签到,获得积分10
1分钟前
852应助善良语雪采纳,获得10
1分钟前
2分钟前
沉静香氛完成签到 ,获得积分10
2分钟前
2分钟前
股价发布了新的文献求助30
2分钟前
善良语雪发布了新的文献求助10
2分钟前
爆米花应助股价采纳,获得10
2分钟前
科研通AI5应助zhscu采纳,获得10
2分钟前
2分钟前
chenxi完成签到 ,获得积分10
2分钟前
善良语雪完成签到,获得积分10
2分钟前
2分钟前
2分钟前
斯文的难破完成签到 ,获得积分10
2分钟前
zhscu发布了新的文献求助10
2分钟前
凯撒的归凯撒完成签到 ,获得积分10
2分钟前
袁翰将军完成签到 ,获得积分10
2分钟前
星辰完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965729
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155787
捐赠科研通 3245462
什么是DOI,文献DOI怎么找? 1792981
邀请新用户注册赠送积分活动 874201
科研通“疑难数据库(出版商)”最低求助积分说明 804247