Diversified sine–cosine algorithm based on differential evolution for multidimensional knapsack problem

背包问题 水准点(测量) 计算机科学 数学优化 趋同(经济学) 差异进化 正弦 算法 早熟收敛 最大值和最小值 人口 数学 粒子群优化 经济增长 数学分析 社会学 人口学 经济 大地测量学 地理 几何学
作者
Shubham Gupta,Rong Su,Shitu Singh
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:130: 109682-109682 被引量:14
标识
DOI:10.1016/j.asoc.2022.109682
摘要

The sine–cosine algorithm (SCA) is one of the simplest and efficient stochastic search algorithms in the field of metaheuristics. It has shown its efficacy in solving several real-life applications. However, in some cases, it shows stagnation at local optima and premature convergence issues due to low exploitation ability and insufficient diversity skills. To overcome these issues from the SCA, its enhanced version named ISCA is developed in this paper. The proposed ISCA is designed based on modifying the original search mechanism of the SCA and hybridizing it with a differential evolution (DE) algorithm. The search procedure in the ISCA switches between the modified search mechanism of the SCA and DE based on the evolutionary states of candidate solutions and a parameter called the switch parameter. The modified SCA enhances the exploitation ability and convergence speed, while the DE maintains the diversity of the population to avoid local optimal solutions. The parameters of the ISCA are tuned in such as way that they could balance the exploration and exploitation features. Validation of the ISCA is conducted on a benchmark set of 23 continuous optimization problems through different performance measures, which reveals its effectiveness as a better optimizer for continuous optimization problems. Furthermore, the proposed ISCA is extended to develop its efficient binary version named BISCA for solving multidimensional knapsack problems. A benchmark collection of 49 instances is used for the performance evaluation of the BISCA. Comparison of results produced by the BISCA with other algorithms and previous studies indicates its better search efficiency and verifies it as an effective alternative for solving the MKP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力完成签到 ,获得积分10
1秒前
3秒前
zhangyuting完成签到 ,获得积分10
4秒前
kid1412完成签到 ,获得积分10
4秒前
xn201120完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
小新小新完成签到 ,获得积分10
7秒前
Dromaeotroodon完成签到,获得积分10
8秒前
江城闲鹤发布了新的文献求助10
8秒前
Singularity应助科研通管家采纳,获得10
12秒前
Singularity应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Singularity应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Singularity应助科研通管家采纳,获得10
12秒前
Singularity应助科研通管家采纳,获得10
12秒前
leaolf应助科研通管家采纳,获得150
12秒前
12秒前
12秒前
13秒前
Tina完成签到 ,获得积分10
16秒前
19秒前
tryagain发布了新的文献求助10
22秒前
争气完成签到 ,获得积分10
22秒前
WZH完成签到,获得积分10
24秒前
李爱国应助江城闲鹤采纳,获得10
27秒前
材1完成签到 ,获得积分10
27秒前
FashionBoy应助up采纳,获得10
28秒前
量子星尘发布了新的文献求助10
28秒前
paper完成签到,获得积分10
29秒前
情怀应助wubin69采纳,获得10
32秒前
linnnn完成签到,获得积分20
33秒前
tryagain完成签到,获得积分10
38秒前
yoyofun完成签到,获得积分10
38秒前
38秒前
皮皮完成签到 ,获得积分10
40秒前
nojego完成签到,获得积分10
43秒前
45秒前
45秒前
量子星尘发布了新的文献求助10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044603
求助须知:如何正确求助?哪些是违规求助? 4274186
关于积分的说明 13323344
捐赠科研通 4087837
什么是DOI,文献DOI怎么找? 2236545
邀请新用户注册赠送积分活动 1243935
关于科研通互助平台的介绍 1171966