Diversified sine–cosine algorithm based on differential evolution for multidimensional knapsack problem

背包问题 水准点(测量) 计算机科学 数学优化 趋同(经济学) 差异进化 正弦 算法 早熟收敛 最大值和最小值 人口 数学 粒子群优化 经济增长 数学分析 社会学 人口学 经济 大地测量学 地理 几何学
作者
Shubham Gupta,Rong Su,Shitu Singh
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:130: 109682-109682 被引量:14
标识
DOI:10.1016/j.asoc.2022.109682
摘要

The sine–cosine algorithm (SCA) is one of the simplest and efficient stochastic search algorithms in the field of metaheuristics. It has shown its efficacy in solving several real-life applications. However, in some cases, it shows stagnation at local optima and premature convergence issues due to low exploitation ability and insufficient diversity skills. To overcome these issues from the SCA, its enhanced version named ISCA is developed in this paper. The proposed ISCA is designed based on modifying the original search mechanism of the SCA and hybridizing it with a differential evolution (DE) algorithm. The search procedure in the ISCA switches between the modified search mechanism of the SCA and DE based on the evolutionary states of candidate solutions and a parameter called the switch parameter. The modified SCA enhances the exploitation ability and convergence speed, while the DE maintains the diversity of the population to avoid local optimal solutions. The parameters of the ISCA are tuned in such as way that they could balance the exploration and exploitation features. Validation of the ISCA is conducted on a benchmark set of 23 continuous optimization problems through different performance measures, which reveals its effectiveness as a better optimizer for continuous optimization problems. Furthermore, the proposed ISCA is extended to develop its efficient binary version named BISCA for solving multidimensional knapsack problems. A benchmark collection of 49 instances is used for the performance evaluation of the BISCA. Comparison of results produced by the BISCA with other algorithms and previous studies indicates its better search efficiency and verifies it as an effective alternative for solving the MKP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉觅夏完成签到,获得积分10
1秒前
我是老大应助只想睡大觉采纳,获得10
3秒前
Rebeccaiscute完成签到 ,获得积分10
3秒前
风汐5423完成签到,获得积分10
4秒前
复杂的新柔完成签到 ,获得积分10
5秒前
5秒前
6秒前
7秒前
iwersonshmtu发布了新的文献求助10
8秒前
10秒前
11秒前
天真凡灵发布了新的文献求助10
11秒前
one_more_thing完成签到,获得积分10
13秒前
彩色的过客完成签到 ,获得积分10
13秒前
踏实的夜白完成签到,获得积分20
15秒前
言不得语发布了新的文献求助10
16秒前
CipherSage应助深情的采波采纳,获得10
16秒前
17秒前
星辰大海应助匪石采纳,获得30
17秒前
perfect完成签到 ,获得积分10
21秒前
HAI发布了新的文献求助10
21秒前
meisisi发布了新的文献求助10
21秒前
大华完成签到,获得积分10
22秒前
23秒前
英俊的铭应助闫什采纳,获得10
23秒前
25秒前
深情的采波完成签到,获得积分10
25秒前
26秒前
稳重的若雁应助Zjin宇采纳,获得10
29秒前
稳重的若雁应助苏木采纳,获得10
29秒前
29秒前
30秒前
自由飞阳完成签到,获得积分10
33秒前
33秒前
33秒前
35秒前
完美世界应助青青采纳,获得30
36秒前
pupu完成签到,获得积分10
36秒前
always完成签到 ,获得积分10
38秒前
赘婿应助震动的化蛹采纳,获得10
39秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136252
求助须知:如何正确求助?哪些是违规求助? 2787284
关于积分的说明 7780707
捐赠科研通 2443292
什么是DOI,文献DOI怎么找? 1299034
科研通“疑难数据库(出版商)”最低求助积分说明 625318
版权声明 600888