Learning multi-scale features for speech emotion recognition with connection attention mechanism

计算机科学 话语 特征(语言学) 特征学习 人工智能 语音识别 模式识别(心理学) 代表(政治) 帧(网络) 卷积神经网络 情绪分类 光学(聚焦) 特征提取 融合机制 融合 哲学 物理 电信 光学 法学 脂质双层融合 语言学 政治 政治学
作者
Zengzhao Chen,Jiawen Li,Hai Liu,Xuyang Wang,Wang Hu,Qiuyu Zheng
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:214: 118943-118943 被引量:60
标识
DOI:10.1016/j.eswa.2022.118943
摘要

Speech emotion recognition (SER) has become a crucial topic in the field of human–computer interactions. Feature representation plays an important role in SER, but there are still many challenges in feature representation such as the inability to predict which features are most effective for SER and the cultural differences in emotion expression. Most previous studies use a single type of feature for the recognition task or conduct early fusion of features. However, a single type of feature cannot well reflect the emotions of speech signals. Also, different features contain different information, direct fusion cannot integrate the advantages of different features. To overcome these challenges, this paper proposes a parallel network for multi-scale SER based on a connection attention mechanism (AMSNet). AMSNet fuses fine-grained frame-level manual features with coarse-grained utterance-level deep features. Meanwhile, it adopts different speech emotion feature extraction modules according to the temporal and spatial features of speech signals, which enriches features and improves feature characterization. The network consists of a frame-level representation learning module (FRLM) based on the time structure and an utterance-level representation learning module (URLM) based on the global structure. Besides, improved attention-based long short-term memory (LSTM) is introduced into FRLM to focus on the frames that contribute more to the final emotion recognition result. In URLM, a convolutional neural network with the squeeze-and-excitation block (SCNN) is introduced to extract deep features. In addition, the connection attention mechanism is proposed for feature fusion, which applies different weights to different features. Extensive experiments are conducted on the IEMOCAP and EmoDB datasets, and the results demonstrate the effectiveness and performance superiority of AMSNet. Our code will be publicly available at https://codeocean.com/capsule/8636967/tree/v1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
eason发布了新的文献求助10
1秒前
忙与闲都伤完成签到,获得积分10
1秒前
1秒前
chillax发布了新的文献求助10
1秒前
机智完成签到,获得积分20
1秒前
段辉发布了新的文献求助10
2秒前
优雅山柏完成签到,获得积分10
2秒前
2秒前
英俊的铭应助羊玉林采纳,获得10
2秒前
123发布了新的文献求助10
3秒前
3秒前
海咲umi发布了新的文献求助10
4秒前
4秒前
hanshishengye完成签到 ,获得积分10
4秒前
王迪发布了新的文献求助10
4秒前
美好斓发布了新的文献求助10
5秒前
5秒前
Stella应助Clover04采纳,获得10
5秒前
5秒前
小葡萄完成签到 ,获得积分10
5秒前
充满希望完成签到,获得积分10
6秒前
乐乐应助falseme采纳,获得10
6秒前
6秒前
6秒前
7秒前
benj完成签到,获得积分10
7秒前
英俊的铭应助Laaaaaa采纳,获得10
8秒前
山山而川发布了新的文献求助10
8秒前
虚心焦发布了新的文献求助10
8秒前
笨笨百招应助动听的惋庭采纳,获得10
8秒前
蛋挞好好吃完成签到,获得积分10
8秒前
快乐寄风发布了新的文献求助10
8秒前
9秒前
pkaff完成签到,获得积分20
9秒前
111完成签到,获得积分10
9秒前
Stella应助CherylZhao采纳,获得30
9秒前
JamesPei应助Yuson_L采纳,获得10
9秒前
刘家成完成签到,获得积分10
10秒前
jinyu完成签到,获得积分10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587595
求助须知:如何正确求助?哪些是违规求助? 4670789
关于积分的说明 14784044
捐赠科研通 4623168
什么是DOI,文献DOI怎么找? 2531360
邀请新用户注册赠送积分活动 1500028
关于科研通互助平台的介绍 1468099