Learning multi-scale features for speech emotion recognition with connection attention mechanism

计算机科学 话语 特征(语言学) 特征学习 人工智能 语音识别 模式识别(心理学) 代表(政治) 帧(网络) 卷积神经网络 情绪分类 光学(聚焦) 特征提取 融合机制 融合 哲学 物理 电信 光学 法学 脂质双层融合 语言学 政治 政治学
作者
Zengzhao Chen,Jiawen Li,Hai Liu,Xuyang Wang,Wang Hu,Qiuyu Zheng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:214: 118943-118943 被引量:54
标识
DOI:10.1016/j.eswa.2022.118943
摘要

Speech emotion recognition (SER) has become a crucial topic in the field of human–computer interactions. Feature representation plays an important role in SER, but there are still many challenges in feature representation such as the inability to predict which features are most effective for SER and the cultural differences in emotion expression. Most previous studies use a single type of feature for the recognition task or conduct early fusion of features. However, a single type of feature cannot well reflect the emotions of speech signals. Also, different features contain different information, direct fusion cannot integrate the advantages of different features. To overcome these challenges, this paper proposes a parallel network for multi-scale SER based on a connection attention mechanism (AMSNet). AMSNet fuses fine-grained frame-level manual features with coarse-grained utterance-level deep features. Meanwhile, it adopts different speech emotion feature extraction modules according to the temporal and spatial features of speech signals, which enriches features and improves feature characterization. The network consists of a frame-level representation learning module (FRLM) based on the time structure and an utterance-level representation learning module (URLM) based on the global structure. Besides, improved attention-based long short-term memory (LSTM) is introduced into FRLM to focus on the frames that contribute more to the final emotion recognition result. In URLM, a convolutional neural network with the squeeze-and-excitation block (SCNN) is introduced to extract deep features. In addition, the connection attention mechanism is proposed for feature fusion, which applies different weights to different features. Extensive experiments are conducted on the IEMOCAP and EmoDB datasets, and the results demonstrate the effectiveness and performance superiority of AMSNet. Our code will be publicly available at https://codeocean.com/capsule/8636967/tree/v1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
keyantong发布了新的文献求助10
2秒前
4秒前
义气的钻石完成签到 ,获得积分20
4秒前
风清扬应助kjz采纳,获得10
6秒前
6秒前
思源应助机灵白桃采纳,获得10
7秒前
7秒前
晴晴发布了新的文献求助10
7秒前
马康辉应助sx采纳,获得10
8秒前
9秒前
9秒前
ming关注了科研通微信公众号
9秒前
蓝天白云完成签到,获得积分10
9秒前
叶佳完成签到,获得积分10
10秒前
陆靖易发布了新的文献求助10
11秒前
11秒前
12秒前
义气的钻石关注了科研通微信公众号
12秒前
Poik完成签到,获得积分10
14秒前
蓝天白云发布了新的文献求助10
15秒前
叶佳发布了新的文献求助10
16秒前
风清扬发布了新的文献求助30
16秒前
16秒前
16秒前
18秒前
18秒前
陆靖易完成签到,获得积分10
18秒前
研友_VZG7GZ应助lin采纳,获得10
19秒前
时尚的梦曼完成签到,获得积分10
19秒前
Jasper应助六六三十六采纳,获得10
20秒前
21秒前
共享精神应助小叶子采纳,获得10
21秒前
重要奇迹发布了新的文献求助10
21秒前
22秒前
赵泽鹏发布了新的文献求助10
22秒前
高贵紫丝发布了新的文献求助10
23秒前
nikki发布了新的文献求助30
23秒前
shimenwanzhao发布了新的文献求助10
24秒前
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979896
求助须知:如何正确求助?哪些是违规求助? 3523949
关于积分的说明 11219166
捐赠科研通 3261387
什么是DOI,文献DOI怎么找? 1800629
邀请新用户注册赠送积分活动 879209
科研通“疑难数据库(出版商)”最低求助积分说明 807202