已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning multi-scale features for speech emotion recognition with connection attention mechanism

计算机科学 话语 特征(语言学) 特征学习 人工智能 语音识别 模式识别(心理学) 代表(政治) 帧(网络) 卷积神经网络 情绪分类 光学(聚焦) 特征提取 融合机制 融合 哲学 物理 电信 光学 法学 脂质双层融合 语言学 政治 政治学
作者
Zengzhao Chen,Jiawen Li,Hai Liu,Xuyang Wang,Wang Hu,Qiuyu Zheng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:214: 118943-118943 被引量:54
标识
DOI:10.1016/j.eswa.2022.118943
摘要

Speech emotion recognition (SER) has become a crucial topic in the field of human–computer interactions. Feature representation plays an important role in SER, but there are still many challenges in feature representation such as the inability to predict which features are most effective for SER and the cultural differences in emotion expression. Most previous studies use a single type of feature for the recognition task or conduct early fusion of features. However, a single type of feature cannot well reflect the emotions of speech signals. Also, different features contain different information, direct fusion cannot integrate the advantages of different features. To overcome these challenges, this paper proposes a parallel network for multi-scale SER based on a connection attention mechanism (AMSNet). AMSNet fuses fine-grained frame-level manual features with coarse-grained utterance-level deep features. Meanwhile, it adopts different speech emotion feature extraction modules according to the temporal and spatial features of speech signals, which enriches features and improves feature characterization. The network consists of a frame-level representation learning module (FRLM) based on the time structure and an utterance-level representation learning module (URLM) based on the global structure. Besides, improved attention-based long short-term memory (LSTM) is introduced into FRLM to focus on the frames that contribute more to the final emotion recognition result. In URLM, a convolutional neural network with the squeeze-and-excitation block (SCNN) is introduced to extract deep features. In addition, the connection attention mechanism is proposed for feature fusion, which applies different weights to different features. Extensive experiments are conducted on the IEMOCAP and EmoDB datasets, and the results demonstrate the effectiveness and performance superiority of AMSNet. Our code will be publicly available at https://codeocean.com/capsule/8636967/tree/v1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助WangZ采纳,获得10
3秒前
郑总完成签到 ,获得积分10
8秒前
潇洒斑马完成签到,获得积分10
10秒前
14秒前
Simone完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
鱼yu发布了新的文献求助10
20秒前
21秒前
冷静的忆秋完成签到,获得积分10
22秒前
大只佬发布了新的文献求助10
23秒前
小蛇玩发布了新的文献求助10
23秒前
wangx发布了新的文献求助10
24秒前
QF发布了新的文献求助10
25秒前
25秒前
25秒前
28秒前
Simone发布了新的文献求助10
29秒前
LiuJ完成签到 ,获得积分10
29秒前
seven发布了新的文献求助10
29秒前
30秒前
科研通AI5应助ls采纳,获得10
31秒前
34秒前
36秒前
37秒前
量子星尘发布了新的文献求助10
37秒前
科研通AI5应助iqa采纳,获得10
39秒前
peanut完成签到 ,获得积分10
40秒前
欣论完成签到 ,获得积分10
41秒前
TBI发布了新的文献求助10
42秒前
44秒前
45秒前
正直的大树完成签到 ,获得积分10
49秒前
科研一霸发布了新的文献求助10
49秒前
量子星尘发布了新的文献求助10
49秒前
miaomiao发布了新的文献求助10
50秒前
wangx完成签到,获得积分10
51秒前
TBI完成签到,获得积分10
53秒前
董希发布了新的文献求助10
54秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666266
求助须知:如何正确求助?哪些是违规求助? 3225307
关于积分的说明 9762401
捐赠科研通 2935195
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759223
科研通“疑难数据库(出版商)”最低求助积分说明 735185