亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning multi-scale features for speech emotion recognition with connection attention mechanism

计算机科学 话语 特征(语言学) 特征学习 人工智能 语音识别 模式识别(心理学) 代表(政治) 帧(网络) 卷积神经网络 情绪分类 光学(聚焦) 特征提取 融合机制 融合 哲学 物理 电信 光学 法学 脂质双层融合 语言学 政治 政治学
作者
Zengzhao Chen,Jiawen Li,Hai Liu,Xuyang Wang,Wang Hu,Qiuyu Zheng
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:214: 118943-118943 被引量:60
标识
DOI:10.1016/j.eswa.2022.118943
摘要

Speech emotion recognition (SER) has become a crucial topic in the field of human–computer interactions. Feature representation plays an important role in SER, but there are still many challenges in feature representation such as the inability to predict which features are most effective for SER and the cultural differences in emotion expression. Most previous studies use a single type of feature for the recognition task or conduct early fusion of features. However, a single type of feature cannot well reflect the emotions of speech signals. Also, different features contain different information, direct fusion cannot integrate the advantages of different features. To overcome these challenges, this paper proposes a parallel network for multi-scale SER based on a connection attention mechanism (AMSNet). AMSNet fuses fine-grained frame-level manual features with coarse-grained utterance-level deep features. Meanwhile, it adopts different speech emotion feature extraction modules according to the temporal and spatial features of speech signals, which enriches features and improves feature characterization. The network consists of a frame-level representation learning module (FRLM) based on the time structure and an utterance-level representation learning module (URLM) based on the global structure. Besides, improved attention-based long short-term memory (LSTM) is introduced into FRLM to focus on the frames that contribute more to the final emotion recognition result. In URLM, a convolutional neural network with the squeeze-and-excitation block (SCNN) is introduced to extract deep features. In addition, the connection attention mechanism is proposed for feature fusion, which applies different weights to different features. Extensive experiments are conducted on the IEMOCAP and EmoDB datasets, and the results demonstrate the effectiveness and performance superiority of AMSNet. Our code will be publicly available at https://codeocean.com/capsule/8636967/tree/v1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助科研通管家采纳,获得30
1秒前
Owen应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助叙温雨采纳,获得10
18秒前
Confetti完成签到 ,获得积分10
29秒前
32秒前
奔跑的小熊完成签到 ,获得积分10
35秒前
安安最可爱完成签到 ,获得积分10
36秒前
可靠幻然发布了新的文献求助10
38秒前
贪玩的万仇完成签到 ,获得积分10
56秒前
1分钟前
1分钟前
迷路平安发布了新的文献求助10
1分钟前
叙温雨发布了新的文献求助10
1分钟前
lin发布了新的文献求助10
1分钟前
迷路平安完成签到,获得积分20
1分钟前
lin完成签到,获得积分10
1分钟前
叙温雨发布了新的文献求助10
1分钟前
搜集达人应助迷路平安采纳,获得10
1分钟前
可靠幻然完成签到 ,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
ZanE完成签到,获得积分10
2分钟前
李健的小迷弟应助叙温雨采纳,获得10
2分钟前
科研兵完成签到 ,获得积分10
2分钟前
2分钟前
谈理想完成签到,获得积分10
2分钟前
叙温雨发布了新的文献求助10
2分钟前
3分钟前
Theta发布了新的文献求助10
3分钟前
叙温雨发布了新的文献求助10
3分钟前
叙温雨发布了新的文献求助10
4分钟前
WerWu完成签到,获得积分0
4分钟前
怕黑的映真完成签到,获得积分10
4分钟前
4分钟前
小李子发布了新的文献求助10
4分钟前
苹果丹烟完成签到 ,获得积分10
5分钟前
完美世界应助小李子采纳,获得10
5分钟前
5分钟前
Joshua发布了新的文献求助10
5分钟前
caca完成签到,获得积分0
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292090
求助须知:如何正确求助?哪些是违规求助? 4442784
关于积分的说明 13830421
捐赠科研通 4326084
什么是DOI,文献DOI怎么找? 2374641
邀请新用户注册赠送积分活动 1369974
关于科研通互助平台的介绍 1334349