花粉
流苏
蔗糖
转录组
生物
代谢组学
蔗糖合成酶
活力测定
代谢组
蔗糖磷酸合酶
植物
生物化学
扎梅斯
体外
农学
基因表达
基因
生物信息学
转化酶
作者
Hongwei Li,Manish Tiwari,Yulou Tang,Limin Wang,Sen Yang,Haochi Long,Jia Guo,Yongchao Wang,Hao Wang,Qinghua Yang,S. V. Krishna Jagadish,Ruixin Shao
标识
DOI:10.1016/j.ecoenv.2022.114191
摘要
Maize pollen is highly sensitive to heat and drought, but few studies have investigated the combined effects of heat and drought on pollen viability. In this study, pollen's structural and physiological characteristics were determined after heat, drought, and combined stressors. Furthermore, integrated metabolomic and transcriptomic analyses of maize pollen were conducted to identify potential mechanisms of stress responses. Tassel growth and spikelet development were considerably suppressed, pollen viability was negatively impacted, and pollen starch granules were depleted during anthesis under stress. The inhibitory effects were more significant due to combined stresses than to heat or drought individually. The metabolic analysis identified 71 important metabolites in the combined stress compared to the other treatments, including sugars and their derivatives related to pollen viability. Transcriptomics also revealed that carbohydrate metabolism was significantly altered under stress. Moreover, a comprehensive metabolome-transcriptome analysis identified a central mechanism in the biosynthesis of UDP-glucose involved in reducing the activity of sucrose synthase SH-1 (shrunken 1) and sus1 (sucrose synthase 1) that suppressed sucrose transfer to UDP-glucose, leading to pollen viability exhaustion under stress. In conclusion, the lower pollen viability after heat and drought stress was associated with poor sucrose synthase activity due to the stress treatments.
科研通智能强力驱动
Strongly Powered by AbleSci AI