Robust Electronic Correlation of Co‐CoN4 Hybrid Active Sites for Durable Rechargeable Zn‐Air Batteries

双功能 析氧 材料科学 X射线吸收光谱法 合理设计 催化作用 密度泛函理论 普鲁士蓝 双功能催化剂 金属 化学工程 电化学 纳米技术 吸收光谱法 电极 物理化学 化学 计算化学 有机化学 工程类 冶金 物理 量子力学
作者
Kuixing Ding,Jiugang Hu,Jia Luo,Liming Zhao,Wei Jin,Yunpeng Liu,Zhonghua Wu,Guoqiang Zou,Hongshuai Hou,Xiaobo Ji
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (52) 被引量:87
标识
DOI:10.1002/adfm.202207331
摘要

Abstract The rational design of bifunctional catalysts with excellent activity and stability toward the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is essential for rechargeable Zn‐air batteries (ZABs). In this study, a facile coordination bridging strategy is proposed to construct bifunctional Co‐CoN 4 hybrid active sites embedded in porous N‐rich carbon nanolamellas (denoted as Co‐CoN 4 @NCNs) for both the ORR and OER. Synchrotron X‐ray absorption spectroscopy and density functional theory calculations reveal that the increased intrinsic ORR/OER activities can be attributed to the efficient interfacial charge transfer between the atomic CoN sites and metallic Co sites due to their robust electronic correlation. In situ Raman spectroscopy confirms that the OER activity depends on the CoOOH intermediates formed during the reaction. Co‐CoN 4 @NCNs exhibits superior bifunctional catalytic performance for the ORR ( E 1/2 = 0.83 V) and OER (η = 310 mV at 10 mA cm −2 ) conducted in alkaline media. The assembled rechargeable Co‐CoN 4 @NCNs‐based ZAB displays an open‐circuit voltage of 1.47 V, peak power density of 118.8 mW cm −2 , specific capacity of 776.7 mAh g −1 , and outstanding cycling stability over 1500 cycles. The regulation of the interfacial electronic properties can contribute to the rational design of bifunctional electrocatalysts used in rechargeable metal‐air batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxfsx应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
123应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
柏林寒冬应助科研通管家采纳,获得10
刚刚
WB87应助科研通管家采纳,获得10
刚刚
CR7应助科研通管家采纳,获得20
刚刚
xxfsx应助科研通管家采纳,获得10
刚刚
zho完成签到,获得积分10
刚刚
刚刚
刚刚
026发布了新的文献求助10
1秒前
linlin发布了新的文献求助10
2秒前
effort完成签到,获得积分10
3秒前
香蕉觅云应助布吉岛采纳,获得10
6秒前
地球发布了新的文献求助10
7秒前
小熊维C完成签到,获得积分10
7秒前
Mic应助小an采纳,获得10
7秒前
CodeCraft应助小an采纳,获得10
7秒前
田様应助小an采纳,获得10
7秒前
秋半梦发布了新的文献求助10
9秒前
123发布了新的文献求助10
10秒前
心灵美凝竹完成签到 ,获得积分10
10秒前
kentonchow应助春分夏至采纳,获得30
10秒前
10秒前
墨瞳完成签到,获得积分10
10秒前
xxfsx应助明亮元柏采纳,获得10
12秒前
Umar完成签到,获得积分10
15秒前
15秒前
可爱香芦发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
Akim应助song采纳,获得10
21秒前
fuhuaandan68完成签到 ,获得积分10
21秒前
MA发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425307
求助须知:如何正确求助?哪些是违规求助? 4539385
关于积分的说明 14167531
捐赠科研通 4456762
什么是DOI,文献DOI怎么找? 2444320
邀请新用户注册赠送积分活动 1435292
关于科研通互助平台的介绍 1412721