材料科学
电解质
阳极
铝
氢
电池(电)
水溶液
化学工程
腐蚀
电化学
纳米技术
无机化学
冶金
物理化学
有机化学
电极
化学
工程类
功率(物理)
物理
量子力学
作者
Chaonan Lv,Yuanxin Zhu,Yixin Li,Yuxin Zhang,Jialin Kuang,Yougen Tang,Huanhuan Li,Haiyan Wang
标识
DOI:10.1016/j.ensm.2023.03.034
摘要
Aqueous aluminum-air batteries are promising candidates for the next generation of energy storage/conversion systems with high safety and low cost. However, the inevitable hydrogen evolution reaction on the metal aluminum anode and the freeze of aqueous electrolytes hinder the practical application of aluminum-air batteries at both room temperatures and subzero temperatures. Herein, we report a hydrogen-bonds reconstructing electrolyte strategy to boost aluminum-air batteries through the dipole of glycerol molecule, thus suppressing the self-corrosion of aluminum anode and lowering down the freezing point of electrolyte. This glycerol-based electrolyte endows a flow aluminum-air full battery with an outstanding specific capacity of 1886 mAh g−1 and a low operating temperature of −60 °C. This finding provides a synthetic design strategy to mitigate metal corrosion and expand the application range of temperature adaptation of aqueous batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI