Exploration and Insight of Dynamic Structure Evolution for Electrocatalysts

电催化剂 电化学 材料科学 钝化 催化作用 电化学能量转换 电解质 纳米技术 化学工程 电极 化学 有机化学 物理化学 工程类 图层(电子)
作者
Fumin Li,Chenfeng Xia,Bao Yu Xia
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (5): 427-437 被引量:16
标识
DOI:10.1021/accountsmr.2c00261
摘要

ConspectusElectrochemical energy technology is crucial for transitioning from fossil fuels to renewable energy sources due to its clean, efficient, and sustainable nature. Electrocatalysts are capable of maximizing energy conversion efficiency in a practical electrochemical energy technology by accelerating the charge transfer at the electrode–electrolyte interface, in which the structure and composition of the electrocatalyst directly determine the catalyst performance. Therefore, advanced electrocatalysts possess not only an optimal structure and composition but also sufficient self-stability in electrochemical processes to achieve continuous and efficient energy conversion. However, the structural evolution of electrocatalysts in various electrocatalytic processes has been gradually revealed and intensified, which hinders the practical application of electrocatalysts in electrochemical energy technology.The electrocatalytic process involves the adsorption and bonding of reactants on active sites, and this results in an instantaneous change in the structure of electrocatalysts. Structural evolution of electrocatalysts proposed here emphasizes the change in the surface or internal structure/composition of electrocatalysts in electrocatalytic reaction systems due to factors such as reaction medium, reactants, potential, and so on. Generally, structural evolution of electrocatalysts involves the transformation of active sites/phases of electrocatalysts under reaction potentials. This process, known as reconstruction, can lead to changes in activity and/or selectivity. Related research focuses on how to control and utilize reconstruction to prepare robust electrocatalysts. However, reconstructed catalysts may not always maintain structural stability and may undergo further structural evolution, such as the loss or passivation of active components, eventually leading to deactivation. This further reconstruction is commonly referred to as electrocatalyst corrosion, which emphasizes the final degradation of catalytic activity due to the structural evolution of electrocatalysts. The related research focuses on the inducement of triggering corrosion and the more critical corrosion prevention strategies. Therefore, it is urgent to clarify the inducement of corrosion and formulate corrosion prevention strategies, such as designing corrosion-resistant electrocatalysts. However, due to the harsh and complex electrochemical environment/conditions and the dynamic and changeable structure evolution behavior of electrocatalysts, it is challenging to clarify the structure evolution mechanism/law and catalytic mechanism. It is also impossible to establish an accurate structure–activity relationship and further guide the design and preparation of high-efficiency corrosion-resistant catalysts.In this Account, we present recent research progress on the structural evolution of electrocatalysts. We first discuss electrocatalyst reconstruction in electrolysis systems, including the behavior and mechanism of reconstruction and several high-efficiency reconstructed catalysts prepared by manipulating reconstruction. We also introduce unique microbially induced synthesis technology that can upgrade reconstruction synthesis. Next, we examine the corrosion of Pt-based catalysts in the oxygen reduction reaction and propose a Pt dissolution mechanism caused by adsorbed oxygenated species. We suggest corrosion-resistant Pt–Ni catalysts, and extendable carbon-coated corrosion resistance strategies are further suggested. Finally, we propose challenges and opportunities for the structural evolution of electrocatalysts in electrochemical energy technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助约克宁采纳,获得10
1秒前
皮皮蛙完成签到,获得积分10
1秒前
小甜发布了新的文献求助10
1秒前
keke完成签到,获得积分10
2秒前
2秒前
2秒前
白茶清酒完成签到,获得积分10
2秒前
Hello应助不会取名啊采纳,获得80
2秒前
大模型应助亮星采纳,获得10
3秒前
QQ完成签到,获得积分10
3秒前
yi0完成签到,获得积分10
3秒前
chenjun7080完成签到,获得积分10
3秒前
4秒前
青蛙十字绣00700完成签到,获得积分10
4秒前
优美季节完成签到 ,获得积分10
4秒前
机器猫nzy完成签到,获得积分10
5秒前
萤火虫完成签到,获得积分10
5秒前
勤奋雨完成签到,获得积分10
5秒前
5秒前
李爱国应助琉璃岁月采纳,获得10
5秒前
mss12138完成签到,获得积分0
6秒前
yu完成签到 ,获得积分10
6秒前
无限达完成签到,获得积分10
6秒前
纵马长歌完成签到,获得积分10
6秒前
6秒前
Serena完成签到,获得积分20
7秒前
zhao完成签到,获得积分10
7秒前
陈琳完成签到,获得积分10
8秒前
Colin_chen完成签到,获得积分10
8秒前
之以发布了新的文献求助10
9秒前
洋山芋完成签到,获得积分10
9秒前
ferritin完成签到 ,获得积分10
9秒前
haoyunlai完成签到,获得积分10
9秒前
彩虹天堂完成签到,获得积分10
9秒前
decademe完成签到,获得积分10
10秒前
10秒前
l六分之一完成签到,获得积分10
10秒前
精明妙之完成签到,获得积分10
11秒前
研友_LX7478完成签到,获得积分10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874