Exploration and Insight of Dynamic Structure Evolution for Electrocatalysts

电催化剂 电化学 材料科学 钝化 催化作用 电化学能量转换 电解质 纳米技术 化学工程 电极 化学 有机化学 物理化学 工程类 图层(电子)
作者
Fumin Li,Chenfeng Xia,Bao Yu Xia
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (5): 427-437 被引量:26
标识
DOI:10.1021/accountsmr.2c00261
摘要

ConspectusElectrochemical energy technology is crucial for transitioning from fossil fuels to renewable energy sources due to its clean, efficient, and sustainable nature. Electrocatalysts are capable of maximizing energy conversion efficiency in a practical electrochemical energy technology by accelerating the charge transfer at the electrode–electrolyte interface, in which the structure and composition of the electrocatalyst directly determine the catalyst performance. Therefore, advanced electrocatalysts possess not only an optimal structure and composition but also sufficient self-stability in electrochemical processes to achieve continuous and efficient energy conversion. However, the structural evolution of electrocatalysts in various electrocatalytic processes has been gradually revealed and intensified, which hinders the practical application of electrocatalysts in electrochemical energy technology.The electrocatalytic process involves the adsorption and bonding of reactants on active sites, and this results in an instantaneous change in the structure of electrocatalysts. Structural evolution of electrocatalysts proposed here emphasizes the change in the surface or internal structure/composition of electrocatalysts in electrocatalytic reaction systems due to factors such as reaction medium, reactants, potential, and so on. Generally, structural evolution of electrocatalysts involves the transformation of active sites/phases of electrocatalysts under reaction potentials. This process, known as reconstruction, can lead to changes in activity and/or selectivity. Related research focuses on how to control and utilize reconstruction to prepare robust electrocatalysts. However, reconstructed catalysts may not always maintain structural stability and may undergo further structural evolution, such as the loss or passivation of active components, eventually leading to deactivation. This further reconstruction is commonly referred to as electrocatalyst corrosion, which emphasizes the final degradation of catalytic activity due to the structural evolution of electrocatalysts. The related research focuses on the inducement of triggering corrosion and the more critical corrosion prevention strategies. Therefore, it is urgent to clarify the inducement of corrosion and formulate corrosion prevention strategies, such as designing corrosion-resistant electrocatalysts. However, due to the harsh and complex electrochemical environment/conditions and the dynamic and changeable structure evolution behavior of electrocatalysts, it is challenging to clarify the structure evolution mechanism/law and catalytic mechanism. It is also impossible to establish an accurate structure–activity relationship and further guide the design and preparation of high-efficiency corrosion-resistant catalysts.In this Account, we present recent research progress on the structural evolution of electrocatalysts. We first discuss electrocatalyst reconstruction in electrolysis systems, including the behavior and mechanism of reconstruction and several high-efficiency reconstructed catalysts prepared by manipulating reconstruction. We also introduce unique microbially induced synthesis technology that can upgrade reconstruction synthesis. Next, we examine the corrosion of Pt-based catalysts in the oxygen reduction reaction and propose a Pt dissolution mechanism caused by adsorbed oxygenated species. We suggest corrosion-resistant Pt–Ni catalysts, and extendable carbon-coated corrosion resistance strategies are further suggested. Finally, we propose challenges and opportunities for the structural evolution of electrocatalysts in electrochemical energy technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵怼怼完成签到 ,获得积分10
1秒前
所所应助小黑采纳,获得10
4秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
9秒前
檀靓完成签到,获得积分10
9秒前
kk完成签到 ,获得积分10
10秒前
英俊康乃馨完成签到 ,获得积分20
11秒前
酷酷的静芙完成签到 ,获得积分10
11秒前
11秒前
李健应助zafan采纳,获得10
11秒前
zhz发布了新的文献求助10
13秒前
可靠绮琴完成签到,获得积分10
15秒前
16秒前
纵马长歌完成签到,获得积分10
18秒前
悦耳睿渊完成签到,获得积分10
19秒前
19秒前
hhh完成签到,获得积分10
20秒前
20秒前
珍珠火龙果完成签到 ,获得积分10
21秒前
无的发布了新的文献求助10
21秒前
23秒前
滴滴滴发布了新的文献求助10
24秒前
可爱的函函应助章山蝶采纳,获得10
25秒前
英姑应助岳岳岳采纳,获得10
26秒前
蜡笔小z完成签到 ,获得积分10
26秒前
阳娅丽发布了新的文献求助10
26秒前
隐形曼青应助聂难敌采纳,获得10
26秒前
可靠夜绿关注了科研通微信公众号
27秒前
28秒前
29秒前
29秒前
orixero应助老高采纳,获得10
30秒前
安诺完成签到,获得积分10
31秒前
顾矜应助苏苏采纳,获得10
31秒前
香蕉觅云应助rachell采纳,获得10
31秒前
31秒前
滴滴滴完成签到,获得积分10
33秒前
怕黑的樱完成签到 ,获得积分10
33秒前
张i鹅完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911831
求助须知:如何正确求助?哪些是违规求助? 4187185
关于积分的说明 13003332
捐赠科研通 3955152
什么是DOI,文献DOI怎么找? 2168569
邀请新用户注册赠送积分活动 1187064
关于科研通互助平台的介绍 1094301