已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploration and Insight of Dynamic Structure Evolution for Electrocatalysts

电催化剂 电化学 材料科学 钝化 催化作用 电化学能量转换 电解质 纳米技术 化学工程 电极 化学 有机化学 物理化学 工程类 图层(电子)
作者
Fumin Li,Chenfeng Xia,Bao Yu Xia
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (5): 427-437 被引量:26
标识
DOI:10.1021/accountsmr.2c00261
摘要

ConspectusElectrochemical energy technology is crucial for transitioning from fossil fuels to renewable energy sources due to its clean, efficient, and sustainable nature. Electrocatalysts are capable of maximizing energy conversion efficiency in a practical electrochemical energy technology by accelerating the charge transfer at the electrode–electrolyte interface, in which the structure and composition of the electrocatalyst directly determine the catalyst performance. Therefore, advanced electrocatalysts possess not only an optimal structure and composition but also sufficient self-stability in electrochemical processes to achieve continuous and efficient energy conversion. However, the structural evolution of electrocatalysts in various electrocatalytic processes has been gradually revealed and intensified, which hinders the practical application of electrocatalysts in electrochemical energy technology.The electrocatalytic process involves the adsorption and bonding of reactants on active sites, and this results in an instantaneous change in the structure of electrocatalysts. Structural evolution of electrocatalysts proposed here emphasizes the change in the surface or internal structure/composition of electrocatalysts in electrocatalytic reaction systems due to factors such as reaction medium, reactants, potential, and so on. Generally, structural evolution of electrocatalysts involves the transformation of active sites/phases of electrocatalysts under reaction potentials. This process, known as reconstruction, can lead to changes in activity and/or selectivity. Related research focuses on how to control and utilize reconstruction to prepare robust electrocatalysts. However, reconstructed catalysts may not always maintain structural stability and may undergo further structural evolution, such as the loss or passivation of active components, eventually leading to deactivation. This further reconstruction is commonly referred to as electrocatalyst corrosion, which emphasizes the final degradation of catalytic activity due to the structural evolution of electrocatalysts. The related research focuses on the inducement of triggering corrosion and the more critical corrosion prevention strategies. Therefore, it is urgent to clarify the inducement of corrosion and formulate corrosion prevention strategies, such as designing corrosion-resistant electrocatalysts. However, due to the harsh and complex electrochemical environment/conditions and the dynamic and changeable structure evolution behavior of electrocatalysts, it is challenging to clarify the structure evolution mechanism/law and catalytic mechanism. It is also impossible to establish an accurate structure–activity relationship and further guide the design and preparation of high-efficiency corrosion-resistant catalysts.In this Account, we present recent research progress on the structural evolution of electrocatalysts. We first discuss electrocatalyst reconstruction in electrolysis systems, including the behavior and mechanism of reconstruction and several high-efficiency reconstructed catalysts prepared by manipulating reconstruction. We also introduce unique microbially induced synthesis technology that can upgrade reconstruction synthesis. Next, we examine the corrosion of Pt-based catalysts in the oxygen reduction reaction and propose a Pt dissolution mechanism caused by adsorbed oxygenated species. We suggest corrosion-resistant Pt–Ni catalysts, and extendable carbon-coated corrosion resistance strategies are further suggested. Finally, we propose challenges and opportunities for the structural evolution of electrocatalysts in electrochemical energy technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
cc发布了新的文献求助10
4秒前
cc应助栗树采纳,获得30
5秒前
EternalStrider完成签到,获得积分10
6秒前
Lidocaine完成签到,获得积分10
6秒前
7秒前
追风少年发布了新的文献求助10
7秒前
上官若男应助刘雄丽采纳,获得10
8秒前
8秒前
克劳修斯完成签到 ,获得积分10
9秒前
烟花应助wlei采纳,获得10
9秒前
哈比人linling完成签到,获得积分10
11秒前
山野有雾都完成签到 ,获得积分20
13秒前
Zxc发布了新的文献求助10
13秒前
大模型应助萱萱采纳,获得10
15秒前
Zxc完成签到,获得积分10
18秒前
在水一方应助Wenyilong采纳,获得10
19秒前
姚姚完成签到 ,获得积分10
19秒前
小碗完成签到 ,获得积分0
20秒前
kw98完成签到 ,获得积分10
21秒前
彭于晏应助Fiona采纳,获得10
21秒前
宁地啊完成签到 ,获得积分10
22秒前
Swear完成签到 ,获得积分10
22秒前
英姑应助undertaker采纳,获得10
24秒前
24秒前
大碗完成签到 ,获得积分10
24秒前
yalbe完成签到 ,获得积分10
25秒前
科目三应助纯真沛儿采纳,获得10
25秒前
刘雄丽发布了新的文献求助10
27秒前
顺利晓蓝完成签到,获得积分10
27秒前
28秒前
undertaker发布了新的文献求助10
30秒前
31秒前
etzel发布了新的文献求助10
33秒前
Aman完成签到,获得积分10
34秒前
小蘑菇应助yjx采纳,获得10
34秒前
35秒前
嗯嗯完成签到 ,获得积分10
35秒前
wqa1472完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253138
求助须知:如何正确求助?哪些是违规求助? 4416657
关于积分的说明 13750270
捐赠科研通 4288890
什么是DOI,文献DOI怎么找? 2353183
邀请新用户注册赠送积分活动 1349892
关于科研通互助平台的介绍 1309642