已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploration and Insight of Dynamic Structure Evolution for Electrocatalysts

电催化剂 电化学 材料科学 钝化 催化作用 电化学能量转换 电解质 纳米技术 化学工程 电极 化学 有机化学 物理化学 工程类 图层(电子)
作者
Fumin Li,Chenfeng Xia,Bao Yu Xia
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:4 (5): 427-437 被引量:26
标识
DOI:10.1021/accountsmr.2c00261
摘要

ConspectusElectrochemical energy technology is crucial for transitioning from fossil fuels to renewable energy sources due to its clean, efficient, and sustainable nature. Electrocatalysts are capable of maximizing energy conversion efficiency in a practical electrochemical energy technology by accelerating the charge transfer at the electrode–electrolyte interface, in which the structure and composition of the electrocatalyst directly determine the catalyst performance. Therefore, advanced electrocatalysts possess not only an optimal structure and composition but also sufficient self-stability in electrochemical processes to achieve continuous and efficient energy conversion. However, the structural evolution of electrocatalysts in various electrocatalytic processes has been gradually revealed and intensified, which hinders the practical application of electrocatalysts in electrochemical energy technology.The electrocatalytic process involves the adsorption and bonding of reactants on active sites, and this results in an instantaneous change in the structure of electrocatalysts. Structural evolution of electrocatalysts proposed here emphasizes the change in the surface or internal structure/composition of electrocatalysts in electrocatalytic reaction systems due to factors such as reaction medium, reactants, potential, and so on. Generally, structural evolution of electrocatalysts involves the transformation of active sites/phases of electrocatalysts under reaction potentials. This process, known as reconstruction, can lead to changes in activity and/or selectivity. Related research focuses on how to control and utilize reconstruction to prepare robust electrocatalysts. However, reconstructed catalysts may not always maintain structural stability and may undergo further structural evolution, such as the loss or passivation of active components, eventually leading to deactivation. This further reconstruction is commonly referred to as electrocatalyst corrosion, which emphasizes the final degradation of catalytic activity due to the structural evolution of electrocatalysts. The related research focuses on the inducement of triggering corrosion and the more critical corrosion prevention strategies. Therefore, it is urgent to clarify the inducement of corrosion and formulate corrosion prevention strategies, such as designing corrosion-resistant electrocatalysts. However, due to the harsh and complex electrochemical environment/conditions and the dynamic and changeable structure evolution behavior of electrocatalysts, it is challenging to clarify the structure evolution mechanism/law and catalytic mechanism. It is also impossible to establish an accurate structure–activity relationship and further guide the design and preparation of high-efficiency corrosion-resistant catalysts.In this Account, we present recent research progress on the structural evolution of electrocatalysts. We first discuss electrocatalyst reconstruction in electrolysis systems, including the behavior and mechanism of reconstruction and several high-efficiency reconstructed catalysts prepared by manipulating reconstruction. We also introduce unique microbially induced synthesis technology that can upgrade reconstruction synthesis. Next, we examine the corrosion of Pt-based catalysts in the oxygen reduction reaction and propose a Pt dissolution mechanism caused by adsorbed oxygenated species. We suggest corrosion-resistant Pt–Ni catalysts, and extendable carbon-coated corrosion resistance strategies are further suggested. Finally, we propose challenges and opportunities for the structural evolution of electrocatalysts in electrochemical energy technologies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助guojingjing采纳,获得10
刚刚
1秒前
abb先生发布了新的文献求助10
3秒前
5秒前
YT发布了新的文献求助10
7秒前
火鸡味锅巴完成签到 ,获得积分10
9秒前
cqhecq完成签到,获得积分10
9秒前
感谢发布了新的文献求助10
9秒前
格物完成签到,获得积分10
12秒前
浮游应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
哈基米德应助科研通管家采纳,获得20
16秒前
16秒前
Perry应助激昂的画笔采纳,获得30
17秒前
小小鱼完成签到 ,获得积分10
22秒前
24秒前
25秒前
luocan完成签到,获得积分10
27秒前
27秒前
怡然剑成完成签到 ,获得积分10
28秒前
吼吼哈嘿发布了新的文献求助10
28秒前
万能图书馆应助可乐采纳,获得10
29秒前
枫威完成签到 ,获得积分10
29秒前
30秒前
30秒前
自觉匪完成签到 ,获得积分10
30秒前
果果发布了新的文献求助10
30秒前
小波完成签到 ,获得积分10
32秒前
善学以致用应助duoduoqian采纳,获得30
32秒前
了了发布了新的文献求助10
32秒前
脑洞疼应助李小小采纳,获得10
35秒前
hcsdgf完成签到 ,获得积分10
36秒前
mwm完成签到 ,获得积分10
36秒前
了了完成签到,获得积分10
42秒前
领导范儿应助故意的幻然采纳,获得10
47秒前
浮游应助我还是做条鱼吧采纳,获得10
49秒前
无花果应助俏皮短靴采纳,获得10
51秒前
SHF完成签到,获得积分10
51秒前
何木木完成签到 ,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301612
求助须知:如何正确求助?哪些是违规求助? 4449085
关于积分的说明 13847800
捐赠科研通 4335167
什么是DOI,文献DOI怎么找? 2380143
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341144