Design of Patient Visit Itineraries in Tandem Systems

串联 计算机科学 材料科学 复合材料
作者
Nan Liu,Guohua Wan,Shan Wang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:1
标识
DOI:10.2139/ssrn.4377643
摘要

Problem definition: Multi-stage service is common in healthcare. One widely adopted approach to manage patient visits in multi-stage service is to provide patients with visit itineraries, which specify individualized appointment time for each patient at each service stage. We study how to design such visit itineraries. Methodology/results: We develop the first optimization modeling framework to provide each patient an individualized visit itinerary in a tandem (healthcare) service system. Due to interdependence among stages, our model loses those elegant properties (e.g., L-convexity and submodularity) often utilized to solve the classic single-stage models. To address these challenges, we develop two original reformulations. One is directly amenable to off-the-shelf optimization software and the other is a concave minimization problem over a polyhedron shown to have neat structural properties, based on which we develop efficient solution algorithms. In addition to these exact solution approaches, we propose an approximation approach with provable optimality bound and numerically validated performance to serve as an easy-to-implement heuristic. A case study populated by data from a large infusion center shows that our approach makes a remarkable 27% cost reduction over practice on average.Managerial implications: Common approaches used in practice are based on simple adjustments to schedules generated by single-stage models, often assuming deterministic service times. Whereas such approaches are intuitive and take advantage of existing knowledge on single-stage models, they can lead to significant loss of operational efficiency in managing multi-stage services. A well-designed patient visit itinerary which carefully addresses the interdependence among stages can significantly improve patient experience and provider utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
陈荆洲完成签到,获得积分10
1秒前
1秒前
1秒前
无花果应助刺槐采纳,获得10
1秒前
1秒前
ally发布了新的文献求助10
1秒前
2秒前
云间发布了新的文献求助10
2秒前
2秒前
湘之灵若完成签到 ,获得积分10
2秒前
3秒前
3秒前
可不是我嘛完成签到 ,获得积分10
3秒前
英俊的铭应助微笑语山采纳,获得10
4秒前
bkagyin应助pearl采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
无花果应助xi采纳,获得10
5秒前
5秒前
顾矜应助qiao采纳,获得10
5秒前
开心不评发布了新的文献求助10
5秒前
LH发布了新的文献求助20
6秒前
Criminology34举报夏夏求助涉嫌违规
6秒前
6秒前
HH发布了新的文献求助10
7秒前
今天做实验了吗完成签到 ,获得积分10
7秒前
YK发布了新的文献求助10
7秒前
lmy9988完成签到,获得积分10
7秒前
娇气的涵柏完成签到,获得积分10
8秒前
8秒前
8秒前
yoimiya发布了新的文献求助10
8秒前
Daisy发布了新的文献求助10
8秒前
locket完成签到 ,获得积分10
9秒前
JamesPei应助ddk采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692514
求助须知:如何正确求助?哪些是违规求助? 5088556
关于积分的说明 15208452
捐赠科研通 4849737
什么是DOI,文献DOI怎么找? 2601255
邀请新用户注册赠送积分活动 1553028
关于科研通互助平台的介绍 1511271