亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of machine learning models for nonalcoholic fatty liver disease

非酒精性脂肪肝 医学 人工智能 脂肪肝 生物信息学 计算生物学 疾病 内科学 机器学习 计算机科学 生物
作者
Hongye Peng,Shaojie Duan,Liang Pan,Miyuan Wang,Jia-Liang Chen,Yichong Wang,Shukun Yao
出处
期刊:Hepatobiliary & Pancreatic Diseases International [Elsevier]
卷期号:22 (6): 615-621 被引量:24
标识
DOI:10.1016/j.hbpd.2023.03.009
摘要

Nonalcoholic fatty liver disease (NAFLD) had become the most prevalent liver disease worldwide. Early diagnosis could effectively reduce NAFLD-related morbidity and mortality. This study aimed to combine the risk factors to develop and validate a novel model for predicting NAFLD. We enrolled 578 participants completing abdominal ultrasound into the training set. The least absolute shrinkage and selection operator (LASSO) regression combined with random forest (RF) was conducted to screen significant predictors for NAFLD risk. Five machine learning models including logistic regression (LR), RF, extreme gradient boosting (XGBoost), gradient boosting machine (GBM), and support vector machine (SVM) were developed. To further improve model performance, we conducted hyperparameter tuning with train function in Python package ‘sklearn’. We included 131 participants completing magnetic resonance imaging into the testing set for external validation. There were 329 participants with NAFLD and 249 without in the training set, while 96 with NAFLD and 35 without were in the testing set. Visceral adiposity index, abdominal circumference, body mass index, alanine aminotransferase (ALT), ALT/AST (aspartate aminotransferase), age, high-density lipoprotein cholesterol (HDL-C) and elevated triglyceride (TG) were important predictors for NAFLD risk. The area under curve (AUC) of LR, RF, XGBoost, GBM, SVM were 0.915 [95% confidence interval (CI): 0.886–0.937], 0.907 (95% CI: 0.856–0.938), 0.928 (95% CI: 0.873–0.944), 0.924 (95% CI: 0.875–0.939), and 0.900 (95% CI: 0.883–0.913), respectively. XGBoost model presented the best predictive performance, and its AUC was enhanced to 0.938 (95% CI: 0.870–0.950) with further parameter tuning. This study developed and validated five novel machine learning models for NAFLD prediction, among which XGBoost presented the best performance and was considered a reliable reference for early identification of high-risk patients with NAFLD in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助Papayaaa采纳,获得10
1秒前
1秒前
21秒前
23秒前
26秒前
NEKO发布了新的文献求助10
27秒前
鱼鱼鱼完成签到,获得积分10
32秒前
jiao发布了新的文献求助10
32秒前
cqcqcq完成签到 ,获得积分10
32秒前
ssu90完成签到 ,获得积分10
41秒前
54秒前
56秒前
美满的芹发布了新的文献求助50
1分钟前
如意小虾米完成签到 ,获得积分10
1分钟前
Papayaaa发布了新的文献求助10
1分钟前
1分钟前
天天快乐应助Papayaaa采纳,获得10
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
乐乐应助ciallo采纳,获得10
1分钟前
NEKO发布了新的文献求助10
1分钟前
欣喜的不惜完成签到 ,获得积分10
2分钟前
CipherSage应助jiao采纳,获得10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
美满的芹完成签到,获得积分20
3分钟前
烈阳发布了新的文献求助10
3分钟前
3分钟前
3分钟前
完美世界应助烈阳采纳,获得10
3分钟前
Donger完成签到 ,获得积分10
3分钟前
ykk完成签到 ,获得积分10
3分钟前
4分钟前
冷静新烟完成签到 ,获得积分10
4分钟前
NEKO发布了新的文献求助30
4分钟前
4分钟前
jiao发布了新的文献求助10
4分钟前
云蓝完成签到 ,获得积分10
4分钟前
oi完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603300
求助须知:如何正确求助?哪些是违规求助? 4688366
关于积分的说明 14853366
捐赠科研通 4689194
什么是DOI,文献DOI怎么找? 2540594
邀请新用户注册赠送积分活动 1506982
关于科研通互助平台的介绍 1471608