Development and validation of machine learning models for nonalcoholic fatty liver disease

非酒精性脂肪肝 医学 置信区间 体质指数 人工智能 随机森林 逻辑回归 接收机工作特性 脂肪肝 算法 胃肠病学 疾病 内科学 机器学习 计算机科学
作者
Hongye Peng,Shaojie Duan,Liang Pan,Miyuan Wang,Jia-Liang Chen,Yichong Wang,Shukun Yao
出处
期刊:Hepatobiliary & Pancreatic Diseases International [Elsevier]
卷期号:22 (6): 615-621 被引量:10
标识
DOI:10.1016/j.hbpd.2023.03.009
摘要

Nonalcoholic fatty liver disease (NAFLD) had become the most prevalent liver disease worldwide. Early diagnosis could effectively reduce NAFLD-related morbidity and mortality. This study aimed to combine the risk factors to develop and validate a novel model for predicting NAFLD. We enrolled 578 participants completing abdominal ultrasound into the training set. The least absolute shrinkage and selection operator (LASSO) regression combined with random forest (RF) was conducted to screen significant predictors for NAFLD risk. Five machine learning models including logistic regression (LR), RF, extreme gradient boosting (XGBoost), gradient boosting machine (GBM), and support vector machine (SVM) were developed. To further improve model performance, we conducted hyperparameter tuning with train function in Python package ‘sklearn’. We included 131 participants completing magnetic resonance imaging into the testing set for external validation. There were 329 participants with NAFLD and 249 without in the training set, while 96 with NAFLD and 35 without were in the testing set. Visceral adiposity index, abdominal circumference, body mass index, alanine aminotransferase (ALT), ALT/AST (aspartate aminotransferase), age, high-density lipoprotein cholesterol (HDL-C) and elevated triglyceride (TG) were important predictors for NAFLD risk. The area under curve (AUC) of LR, RF, XGBoost, GBM, SVM were 0.915 [95% confidence interval (CI): 0.886–0.937], 0.907 (95% CI: 0.856–0.938), 0.928 (95% CI: 0.873–0.944), 0.924 (95% CI: 0.875–0.939), and 0.900 (95% CI: 0.883–0.913), respectively. XGBoost model presented the best predictive performance, and its AUC was enhanced to 0.938 (95% CI: 0.870–0.950) with further parameter tuning. This study developed and validated five novel machine learning models for NAFLD prediction, among which XGBoost presented the best performance and was considered a reliable reference for early identification of high-risk patients with NAFLD in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cjjwei完成签到 ,获得积分10
2秒前
DueDue0327发布了新的文献求助10
2秒前
外向语山发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
5秒前
陈谨完成签到 ,获得积分10
6秒前
mmssdd完成签到,获得积分10
6秒前
Akim应助闻歌采纳,获得10
9秒前
mmssdd发布了新的文献求助10
9秒前
善学以致用应助老王采纳,获得10
11秒前
科研通AI2S应助SibetHu采纳,获得10
12秒前
13秒前
DG完成签到,获得积分10
13秒前
热爱生活的打工人完成签到,获得积分10
13秒前
科目三应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
元谷雪应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
小常不馋完成签到,获得积分10
14秒前
思源应助科研通管家采纳,获得10
14秒前
Niuma完成签到,获得积分10
14秒前
丘比特应助yl采纳,获得10
16秒前
琉璃完成签到,获得积分10
17秒前
跳跃尔琴发布了新的文献求助10
18秒前
19秒前
A1234567发布了新的文献求助10
19秒前
20秒前
20秒前
dnmd完成签到,获得积分10
20秒前
20秒前
英姑应助恩赐解脱采纳,获得10
23秒前
耍酷芷珍发布了新的文献求助10
23秒前
23秒前
开朗满天完成签到 ,获得积分10
23秒前
24秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143605
求助须知:如何正确求助?哪些是违规求助? 2795002
关于积分的说明 7813063
捐赠科研通 2451122
什么是DOI,文献DOI怎么找? 1304258
科研通“疑难数据库(出版商)”最低求助积分说明 627213
版权声明 601386