Development and validation of machine learning models for nonalcoholic fatty liver disease

非酒精性脂肪肝 医学 人工智能 脂肪肝 生物信息学 计算生物学 疾病 内科学 机器学习 计算机科学 生物
作者
Hongye Peng,Shaojie Duan,Liang Pan,Miyuan Wang,Jia-Liang Chen,Yichong Wang,Shukun Yao
出处
期刊:Hepatobiliary & Pancreatic Diseases International [Elsevier]
卷期号:22 (6): 615-621 被引量:24
标识
DOI:10.1016/j.hbpd.2023.03.009
摘要

Nonalcoholic fatty liver disease (NAFLD) had become the most prevalent liver disease worldwide. Early diagnosis could effectively reduce NAFLD-related morbidity and mortality. This study aimed to combine the risk factors to develop and validate a novel model for predicting NAFLD. We enrolled 578 participants completing abdominal ultrasound into the training set. The least absolute shrinkage and selection operator (LASSO) regression combined with random forest (RF) was conducted to screen significant predictors for NAFLD risk. Five machine learning models including logistic regression (LR), RF, extreme gradient boosting (XGBoost), gradient boosting machine (GBM), and support vector machine (SVM) were developed. To further improve model performance, we conducted hyperparameter tuning with train function in Python package ‘sklearn’. We included 131 participants completing magnetic resonance imaging into the testing set for external validation. There were 329 participants with NAFLD and 249 without in the training set, while 96 with NAFLD and 35 without were in the testing set. Visceral adiposity index, abdominal circumference, body mass index, alanine aminotransferase (ALT), ALT/AST (aspartate aminotransferase), age, high-density lipoprotein cholesterol (HDL-C) and elevated triglyceride (TG) were important predictors for NAFLD risk. The area under curve (AUC) of LR, RF, XGBoost, GBM, SVM were 0.915 [95% confidence interval (CI): 0.886–0.937], 0.907 (95% CI: 0.856–0.938), 0.928 (95% CI: 0.873–0.944), 0.924 (95% CI: 0.875–0.939), and 0.900 (95% CI: 0.883–0.913), respectively. XGBoost model presented the best predictive performance, and its AUC was enhanced to 0.938 (95% CI: 0.870–0.950) with further parameter tuning. This study developed and validated five novel machine learning models for NAFLD prediction, among which XGBoost presented the best performance and was considered a reliable reference for early identification of high-risk patients with NAFLD in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲲鹏完成签到 ,获得积分10
5秒前
6秒前
咿呀喂完成签到,获得积分10
9秒前
不重名完成签到 ,获得积分10
10秒前
成就觅海完成签到 ,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
Japrin完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
温暖完成签到 ,获得积分10
20秒前
蛋堡完成签到 ,获得积分10
25秒前
Lucas应助研友_ZegMrL采纳,获得10
26秒前
量子星尘发布了新的文献求助30
26秒前
梁晓雪完成签到 ,获得积分10
26秒前
roundtree完成签到 ,获得积分0
29秒前
文静的翠彤完成签到 ,获得积分10
30秒前
31秒前
冷酷的忆安完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
38秒前
38秒前
研友_ZegMrL完成签到,获得积分10
38秒前
一枝完成签到 ,获得积分10
39秒前
sam完成签到,获得积分10
41秒前
量子星尘发布了新的文献求助10
43秒前
奇奇怪怪的大鱼完成签到,获得积分10
45秒前
lzy完成签到,获得积分10
46秒前
wBw完成签到,获得积分0
47秒前
48秒前
李海艳完成签到 ,获得积分10
50秒前
出厂价完成签到,获得积分10
51秒前
无极微光应助左白易采纳,获得20
53秒前
53秒前
量子星尘发布了新的文献求助10
53秒前
fay1987发布了新的文献求助10
54秒前
xingsixs完成签到 ,获得积分10
54秒前
GinaLundhild06完成签到,获得积分10
55秒前
可爱语芹发布了新的文献求助10
58秒前
往昔不过微澜完成签到,获得积分10
59秒前
求助完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764955
求助须知:如何正确求助?哪些是违规求助? 5557008
关于积分的说明 15406819
捐赠科研通 4899862
什么是DOI,文献DOI怎么找? 2636048
邀请新用户注册赠送积分活动 1584235
关于科研通互助平台的介绍 1539555