亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of machine learning models for nonalcoholic fatty liver disease

非酒精性脂肪肝 医学 人工智能 脂肪肝 生物信息学 计算生物学 疾病 内科学 机器学习 计算机科学 生物
作者
Hongye Peng,Shaojie Duan,Liang Pan,Miyuan Wang,Jia-Liang Chen,Yichong Wang,Shukun Yao
出处
期刊:Hepatobiliary & Pancreatic Diseases International [Elsevier BV]
卷期号:22 (6): 615-621 被引量:21
标识
DOI:10.1016/j.hbpd.2023.03.009
摘要

Nonalcoholic fatty liver disease (NAFLD) had become the most prevalent liver disease worldwide. Early diagnosis could effectively reduce NAFLD-related morbidity and mortality. This study aimed to combine the risk factors to develop and validate a novel model for predicting NAFLD. We enrolled 578 participants completing abdominal ultrasound into the training set. The least absolute shrinkage and selection operator (LASSO) regression combined with random forest (RF) was conducted to screen significant predictors for NAFLD risk. Five machine learning models including logistic regression (LR), RF, extreme gradient boosting (XGBoost), gradient boosting machine (GBM), and support vector machine (SVM) were developed. To further improve model performance, we conducted hyperparameter tuning with train function in Python package ‘sklearn’. We included 131 participants completing magnetic resonance imaging into the testing set for external validation. There were 329 participants with NAFLD and 249 without in the training set, while 96 with NAFLD and 35 without were in the testing set. Visceral adiposity index, abdominal circumference, body mass index, alanine aminotransferase (ALT), ALT/AST (aspartate aminotransferase), age, high-density lipoprotein cholesterol (HDL-C) and elevated triglyceride (TG) were important predictors for NAFLD risk. The area under curve (AUC) of LR, RF, XGBoost, GBM, SVM were 0.915 [95% confidence interval (CI): 0.886–0.937], 0.907 (95% CI: 0.856–0.938), 0.928 (95% CI: 0.873–0.944), 0.924 (95% CI: 0.875–0.939), and 0.900 (95% CI: 0.883–0.913), respectively. XGBoost model presented the best predictive performance, and its AUC was enhanced to 0.938 (95% CI: 0.870–0.950) with further parameter tuning. This study developed and validated five novel machine learning models for NAFLD prediction, among which XGBoost presented the best performance and was considered a reliable reference for early identification of high-risk patients with NAFLD in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
窝窝窝书完成签到,获得积分10
27秒前
CipherSage应助吴门烟水采纳,获得10
32秒前
加菲丰丰完成签到,获得积分0
38秒前
量子星尘发布了新的文献求助20
44秒前
50秒前
年轻的飞风完成签到,获得积分10
53秒前
Able完成签到,获得积分10
56秒前
56秒前
1分钟前
2分钟前
NexusExplorer应助wasd采纳,获得10
2分钟前
自律完成签到,获得积分10
2分钟前
吴门烟水发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
向阳而生完成签到,获得积分10
2分钟前
2分钟前
LukeLion发布了新的文献求助10
2分钟前
1111完成签到 ,获得积分20
2分钟前
3分钟前
隐形曼青应助谵妄姿态采纳,获得10
3分钟前
万能图书馆应助1111采纳,获得10
3分钟前
3分钟前
谵妄姿态发布了新的文献求助10
3分钟前
3分钟前
穿林打夜完成签到,获得积分10
3分钟前
1111发布了新的文献求助10
3分钟前
3分钟前
英俊的铭应助yangbo666采纳,获得10
3分钟前
3分钟前
FashionBoy应助andrew12399采纳,获得10
3分钟前
4分钟前
鹿不可发布了新的文献求助10
4分钟前
andrew12399完成签到,获得积分10
4分钟前
andrew12399发布了新的文献求助10
4分钟前
Lucas应助cccc1111111采纳,获得10
4分钟前
4分钟前
cccc1111111完成签到,获得积分20
4分钟前
cccc1111111发布了新的文献求助10
5分钟前
思源应助cccc1111111采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4611641
求助须知:如何正确求助?哪些是违规求助? 4017095
关于积分的说明 12436032
捐赠科研通 3699038
什么是DOI,文献DOI怎么找? 2039901
邀请新用户注册赠送积分活动 1072693
科研通“疑难数据库(出版商)”最低求助积分说明 956438