Development and validation of machine learning models for nonalcoholic fatty liver disease

非酒精性脂肪肝 医学 人工智能 脂肪肝 生物信息学 计算生物学 疾病 内科学 机器学习 计算机科学 生物
作者
Hongye Peng,Shaojie Duan,Liang Pan,Miyuan Wang,Jia-Liang Chen,Yichong Wang,Shukun Yao
出处
期刊:Hepatobiliary & Pancreatic Diseases International [Elsevier BV]
卷期号:22 (6): 615-621 被引量:21
标识
DOI:10.1016/j.hbpd.2023.03.009
摘要

Nonalcoholic fatty liver disease (NAFLD) had become the most prevalent liver disease worldwide. Early diagnosis could effectively reduce NAFLD-related morbidity and mortality. This study aimed to combine the risk factors to develop and validate a novel model for predicting NAFLD. We enrolled 578 participants completing abdominal ultrasound into the training set. The least absolute shrinkage and selection operator (LASSO) regression combined with random forest (RF) was conducted to screen significant predictors for NAFLD risk. Five machine learning models including logistic regression (LR), RF, extreme gradient boosting (XGBoost), gradient boosting machine (GBM), and support vector machine (SVM) were developed. To further improve model performance, we conducted hyperparameter tuning with train function in Python package ‘sklearn’. We included 131 participants completing magnetic resonance imaging into the testing set for external validation. There were 329 participants with NAFLD and 249 without in the training set, while 96 with NAFLD and 35 without were in the testing set. Visceral adiposity index, abdominal circumference, body mass index, alanine aminotransferase (ALT), ALT/AST (aspartate aminotransferase), age, high-density lipoprotein cholesterol (HDL-C) and elevated triglyceride (TG) were important predictors for NAFLD risk. The area under curve (AUC) of LR, RF, XGBoost, GBM, SVM were 0.915 [95% confidence interval (CI): 0.886–0.937], 0.907 (95% CI: 0.856–0.938), 0.928 (95% CI: 0.873–0.944), 0.924 (95% CI: 0.875–0.939), and 0.900 (95% CI: 0.883–0.913), respectively. XGBoost model presented the best predictive performance, and its AUC was enhanced to 0.938 (95% CI: 0.870–0.950) with further parameter tuning. This study developed and validated five novel machine learning models for NAFLD prediction, among which XGBoost presented the best performance and was considered a reliable reference for early identification of high-risk patients with NAFLD in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助一粟的粉r采纳,获得10
1秒前
bfr完成签到,获得积分10
1秒前
周晓发布了新的文献求助10
1秒前
starry完成签到,获得积分10
2秒前
3秒前
玄颂完成签到,获得积分10
3秒前
3秒前
一味地丶逞强完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
学术瞎子发布了新的文献求助10
4秒前
Michael.Hu完成签到,获得积分10
4秒前
Sissi发布了新的文献求助10
5秒前
5秒前
zcseed完成签到,获得积分20
5秒前
ding应助无语采纳,获得10
5秒前
6秒前
CipherSage应助超级柜子采纳,获得10
6秒前
CodeCraft应助qiyumeng采纳,获得10
7秒前
紧张的斩完成签到 ,获得积分10
7秒前
科研通AI5应助仓鼠侠采纳,获得10
7秒前
Jin0717发布了新的文献求助10
7秒前
8秒前
pol完成签到 ,获得积分10
8秒前
WXG完成签到,获得积分10
8秒前
8秒前
迷人依白完成签到,获得积分10
8秒前
8秒前
ggghost完成签到 ,获得积分10
9秒前
10秒前
发文章12138完成签到,获得积分10
10秒前
zcseed发布了新的文献求助30
11秒前
尚未千万里完成签到,获得积分10
11秒前
czzzzz完成签到,获得积分10
11秒前
12秒前
12秒前
RUN_L发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
2222222222给2222222222的求助进行了留言
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098501
求助须知:如何正确求助?哪些是违规求助? 4310677
关于积分的说明 13431614
捐赠科研通 4137982
什么是DOI,文献DOI怎么找? 2266990
邀请新用户注册赠送积分活动 1270081
关于科研通互助平台的介绍 1206363