已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of machine learning models for nonalcoholic fatty liver disease

非酒精性脂肪肝 医学 人工智能 脂肪肝 生物信息学 计算生物学 疾病 内科学 机器学习 计算机科学 生物
作者
Hongye Peng,Shaojie Duan,Liang Pan,Miyuan Wang,Jia-Liang Chen,Yichong Wang,Shukun Yao
出处
期刊:Hepatobiliary & Pancreatic Diseases International [Elsevier]
卷期号:22 (6): 615-621 被引量:24
标识
DOI:10.1016/j.hbpd.2023.03.009
摘要

Nonalcoholic fatty liver disease (NAFLD) had become the most prevalent liver disease worldwide. Early diagnosis could effectively reduce NAFLD-related morbidity and mortality. This study aimed to combine the risk factors to develop and validate a novel model for predicting NAFLD. We enrolled 578 participants completing abdominal ultrasound into the training set. The least absolute shrinkage and selection operator (LASSO) regression combined with random forest (RF) was conducted to screen significant predictors for NAFLD risk. Five machine learning models including logistic regression (LR), RF, extreme gradient boosting (XGBoost), gradient boosting machine (GBM), and support vector machine (SVM) were developed. To further improve model performance, we conducted hyperparameter tuning with train function in Python package ‘sklearn’. We included 131 participants completing magnetic resonance imaging into the testing set for external validation. There were 329 participants with NAFLD and 249 without in the training set, while 96 with NAFLD and 35 without were in the testing set. Visceral adiposity index, abdominal circumference, body mass index, alanine aminotransferase (ALT), ALT/AST (aspartate aminotransferase), age, high-density lipoprotein cholesterol (HDL-C) and elevated triglyceride (TG) were important predictors for NAFLD risk. The area under curve (AUC) of LR, RF, XGBoost, GBM, SVM were 0.915 [95% confidence interval (CI): 0.886–0.937], 0.907 (95% CI: 0.856–0.938), 0.928 (95% CI: 0.873–0.944), 0.924 (95% CI: 0.875–0.939), and 0.900 (95% CI: 0.883–0.913), respectively. XGBoost model presented the best predictive performance, and its AUC was enhanced to 0.938 (95% CI: 0.870–0.950) with further parameter tuning. This study developed and validated five novel machine learning models for NAFLD prediction, among which XGBoost presented the best performance and was considered a reliable reference for early identification of high-risk patients with NAFLD in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助蝴蝶采纳,获得10
刚刚
yttttt发布了新的文献求助10
2秒前
4秒前
Rr完成签到,获得积分10
5秒前
江蹇发布了新的文献求助10
6秒前
曹国庆完成签到 ,获得积分10
7秒前
顾矜应助一只奥利奥采纳,获得10
7秒前
8秒前
王饱饱发布了新的文献求助10
8秒前
8秒前
chai发布了新的文献求助10
9秒前
11秒前
12秒前
彼岸完成签到,获得积分10
13秒前
科研通AI2S应助佳佳采纳,获得10
14秒前
chai发布了新的文献求助10
15秒前
17秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
王饱饱完成签到,获得积分10
25秒前
27秒前
liuliu完成签到,获得积分10
27秒前
krajicek完成签到,获得积分10
30秒前
鲸鱼完成签到 ,获得积分10
31秒前
严珍珍完成签到 ,获得积分10
31秒前
31秒前
小奋青完成签到 ,获得积分10
35秒前
迷路中恶111完成签到,获得积分10
36秒前
38秒前
遥感小虫完成签到,获得积分10
39秒前
41秒前
遥感小虫发布了新的文献求助10
43秒前
热爱科研的小白鼠完成签到,获得积分10
43秒前
AXX041795发布了新的文献求助10
43秒前
abcd发布了新的文献求助30
44秒前
奋斗人雄完成签到,获得积分0
44秒前
蝴蝶完成签到,获得积分20
44秒前
48秒前
sjr完成签到,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723263
求助须知:如何正确求助?哪些是违规求助? 5275470
关于积分的说明 15298353
捐赠科研通 4871863
什么是DOI,文献DOI怎么找? 2616280
邀请新用户注册赠送积分活动 1566091
关于科研通互助平台的介绍 1523007