亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of machine learning models for nonalcoholic fatty liver disease

非酒精性脂肪肝 医学 人工智能 脂肪肝 生物信息学 计算生物学 疾病 内科学 机器学习 计算机科学 生物
作者
Hongye Peng,Shaojie Duan,Liang Pan,Miyuan Wang,Jia-Liang Chen,Yichong Wang,Shukun Yao
出处
期刊:Hepatobiliary & Pancreatic Diseases International [Elsevier]
卷期号:22 (6): 615-621 被引量:24
标识
DOI:10.1016/j.hbpd.2023.03.009
摘要

Nonalcoholic fatty liver disease (NAFLD) had become the most prevalent liver disease worldwide. Early diagnosis could effectively reduce NAFLD-related morbidity and mortality. This study aimed to combine the risk factors to develop and validate a novel model for predicting NAFLD. We enrolled 578 participants completing abdominal ultrasound into the training set. The least absolute shrinkage and selection operator (LASSO) regression combined with random forest (RF) was conducted to screen significant predictors for NAFLD risk. Five machine learning models including logistic regression (LR), RF, extreme gradient boosting (XGBoost), gradient boosting machine (GBM), and support vector machine (SVM) were developed. To further improve model performance, we conducted hyperparameter tuning with train function in Python package ‘sklearn’. We included 131 participants completing magnetic resonance imaging into the testing set for external validation. There were 329 participants with NAFLD and 249 without in the training set, while 96 with NAFLD and 35 without were in the testing set. Visceral adiposity index, abdominal circumference, body mass index, alanine aminotransferase (ALT), ALT/AST (aspartate aminotransferase), age, high-density lipoprotein cholesterol (HDL-C) and elevated triglyceride (TG) were important predictors for NAFLD risk. The area under curve (AUC) of LR, RF, XGBoost, GBM, SVM were 0.915 [95% confidence interval (CI): 0.886–0.937], 0.907 (95% CI: 0.856–0.938), 0.928 (95% CI: 0.873–0.944), 0.924 (95% CI: 0.875–0.939), and 0.900 (95% CI: 0.883–0.913), respectively. XGBoost model presented the best predictive performance, and its AUC was enhanced to 0.938 (95% CI: 0.870–0.950) with further parameter tuning. This study developed and validated five novel machine learning models for NAFLD prediction, among which XGBoost presented the best performance and was considered a reliable reference for early identification of high-risk patients with NAFLD in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chris完成签到 ,获得积分10
4秒前
汉光武发布了新的文献求助30
4秒前
6秒前
7秒前
yin景景完成签到,获得积分10
7秒前
上官若男应助Angora采纳,获得50
8秒前
8秒前
大模型应助还行采纳,获得10
10秒前
林下落月光完成签到,获得积分10
11秒前
慕青应助zmftl采纳,获得10
12秒前
欧皇完成签到,获得积分20
13秒前
14秒前
FUJIAN关注了科研通微信公众号
17秒前
还行完成签到,获得积分10
19秒前
2568269431完成签到 ,获得积分10
20秒前
黄HYK完成签到 ,获得积分10
27秒前
香蕉觅云应助kyle竣采纳,获得10
28秒前
月关完成签到 ,获得积分10
28秒前
地理牛马完成签到 ,获得积分10
30秒前
心静听炊烟完成签到 ,获得积分10
32秒前
kyle竣完成签到,获得积分10
36秒前
oleskarabach发布了新的文献求助10
38秒前
江枫渔火完成签到 ,获得积分10
39秒前
39秒前
orixero应助南淮采纳,获得10
43秒前
43秒前
47秒前
vt发布了新的文献求助10
48秒前
51秒前
SUNny完成签到 ,获得积分10
53秒前
cfghjj发布了新的文献求助10
53秒前
南淮发布了新的文献求助10
54秒前
123完成签到 ,获得积分10
54秒前
Went完成签到,获得积分10
58秒前
59秒前
Ava应助cfghjj采纳,获得10
1分钟前
1分钟前
vt完成签到,获得积分20
1分钟前
1分钟前
anti-pua发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534135
求助须知:如何正确求助?哪些是违规求助? 4622242
关于积分的说明 14582092
捐赠科研通 4562357
什么是DOI,文献DOI怎么找? 2500139
邀请新用户注册赠送积分活动 1479703
关于科研通互助平台的介绍 1450787