Development and validation of machine learning models for nonalcoholic fatty liver disease

非酒精性脂肪肝 医学 人工智能 脂肪肝 生物信息学 计算生物学 疾病 内科学 机器学习 计算机科学 生物
作者
Hongye Peng,Shaojie Duan,Liang Pan,Miyuan Wang,Jia-Liang Chen,Yichong Wang,Shukun Yao
出处
期刊:Hepatobiliary & Pancreatic Diseases International [Elsevier BV]
卷期号:22 (6): 615-621 被引量:14
标识
DOI:10.1016/j.hbpd.2023.03.009
摘要

Nonalcoholic fatty liver disease (NAFLD) had become the most prevalent liver disease worldwide. Early diagnosis could effectively reduce NAFLD-related morbidity and mortality. This study aimed to combine the risk factors to develop and validate a novel model for predicting NAFLD. We enrolled 578 participants completing abdominal ultrasound into the training set. The least absolute shrinkage and selection operator (LASSO) regression combined with random forest (RF) was conducted to screen significant predictors for NAFLD risk. Five machine learning models including logistic regression (LR), RF, extreme gradient boosting (XGBoost), gradient boosting machine (GBM), and support vector machine (SVM) were developed. To further improve model performance, we conducted hyperparameter tuning with train function in Python package ‘sklearn’. We included 131 participants completing magnetic resonance imaging into the testing set for external validation. There were 329 participants with NAFLD and 249 without in the training set, while 96 with NAFLD and 35 without were in the testing set. Visceral adiposity index, abdominal circumference, body mass index, alanine aminotransferase (ALT), ALT/AST (aspartate aminotransferase), age, high-density lipoprotein cholesterol (HDL-C) and elevated triglyceride (TG) were important predictors for NAFLD risk. The area under curve (AUC) of LR, RF, XGBoost, GBM, SVM were 0.915 [95% confidence interval (CI): 0.886–0.937], 0.907 (95% CI: 0.856–0.938), 0.928 (95% CI: 0.873–0.944), 0.924 (95% CI: 0.875–0.939), and 0.900 (95% CI: 0.883–0.913), respectively. XGBoost model presented the best predictive performance, and its AUC was enhanced to 0.938 (95% CI: 0.870–0.950) with further parameter tuning. This study developed and validated five novel machine learning models for NAFLD prediction, among which XGBoost presented the best performance and was considered a reliable reference for early identification of high-risk patients with NAFLD in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YEM发布了新的文献求助10
1秒前
光夜发布了新的文献求助10
1秒前
小土豆发布了新的文献求助30
1秒前
认真飞瑶发布了新的文献求助10
1秒前
田様应助anna采纳,获得10
3秒前
shinn发布了新的文献求助10
3秒前
传奇3应助文艺摩托采纳,获得10
7秒前
8秒前
Winnie完成签到 ,获得积分10
9秒前
10秒前
11秒前
从容的香露完成签到,获得积分10
11秒前
zz完成签到,获得积分20
13秒前
13秒前
13秒前
汤姆发布了新的文献求助10
14秒前
太上老君发布了新的文献求助10
15秒前
thalia完成签到,获得积分10
15秒前
Wl0115发布了新的文献求助30
15秒前
牢大完成签到 ,获得积分10
16秒前
小姜发布了新的文献求助10
16秒前
xxxllllll发布了新的文献求助10
17秒前
ffffffflzx666完成签到,获得积分10
17秒前
赘婿应助zz采纳,获得10
18秒前
19秒前
21秒前
21秒前
平生完成签到 ,获得积分10
21秒前
赘婿应助七月采纳,获得10
23秒前
77发布了新的文献求助10
25秒前
LY发布了新的文献求助10
25秒前
坚强的雁蓉完成签到 ,获得积分10
27秒前
与我月初发布了新的文献求助10
27秒前
Hello应助perfumei采纳,获得10
27秒前
css1997完成签到 ,获得积分10
27秒前
Rondab应助琪凯定理采纳,获得10
28秒前
烟花应助闪闪灯泡采纳,获得10
28秒前
飞快的平彤完成签到,获得积分10
29秒前
32秒前
CodeCraft应助shinn采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967974
求助须知:如何正确求助?哪些是违规求助? 3513037
关于积分的说明 11166022
捐赠科研通 3248121
什么是DOI,文献DOI怎么找? 1794108
邀请新用户注册赠送积分活动 874854
科研通“疑难数据库(出版商)”最低求助积分说明 804602