Development and validation of machine learning models for nonalcoholic fatty liver disease

非酒精性脂肪肝 医学 人工智能 脂肪肝 生物信息学 计算生物学 疾病 内科学 机器学习 计算机科学 生物
作者
Hongye Peng,Shaojie Duan,Liang Pan,Miyuan Wang,Jia-Liang Chen,Yichong Wang,Shukun Yao
出处
期刊:Hepatobiliary & Pancreatic Diseases International [Elsevier]
卷期号:22 (6): 615-621 被引量:24
标识
DOI:10.1016/j.hbpd.2023.03.009
摘要

Nonalcoholic fatty liver disease (NAFLD) had become the most prevalent liver disease worldwide. Early diagnosis could effectively reduce NAFLD-related morbidity and mortality. This study aimed to combine the risk factors to develop and validate a novel model for predicting NAFLD. We enrolled 578 participants completing abdominal ultrasound into the training set. The least absolute shrinkage and selection operator (LASSO) regression combined with random forest (RF) was conducted to screen significant predictors for NAFLD risk. Five machine learning models including logistic regression (LR), RF, extreme gradient boosting (XGBoost), gradient boosting machine (GBM), and support vector machine (SVM) were developed. To further improve model performance, we conducted hyperparameter tuning with train function in Python package ‘sklearn’. We included 131 participants completing magnetic resonance imaging into the testing set for external validation. There were 329 participants with NAFLD and 249 without in the training set, while 96 with NAFLD and 35 without were in the testing set. Visceral adiposity index, abdominal circumference, body mass index, alanine aminotransferase (ALT), ALT/AST (aspartate aminotransferase), age, high-density lipoprotein cholesterol (HDL-C) and elevated triglyceride (TG) were important predictors for NAFLD risk. The area under curve (AUC) of LR, RF, XGBoost, GBM, SVM were 0.915 [95% confidence interval (CI): 0.886–0.937], 0.907 (95% CI: 0.856–0.938), 0.928 (95% CI: 0.873–0.944), 0.924 (95% CI: 0.875–0.939), and 0.900 (95% CI: 0.883–0.913), respectively. XGBoost model presented the best predictive performance, and its AUC was enhanced to 0.938 (95% CI: 0.870–0.950) with further parameter tuning. This study developed and validated five novel machine learning models for NAFLD prediction, among which XGBoost presented the best performance and was considered a reliable reference for early identification of high-risk patients with NAFLD in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lande发布了新的文献求助10
1秒前
古工楼发布了新的文献求助10
3秒前
在水一方应助wen采纳,获得10
6秒前
赘婿应助Mandyan采纳,获得10
6秒前
QLLW发布了新的文献求助10
6秒前
不能当饭吃完成签到,获得积分10
6秒前
英俊的铭应助木杉采纳,获得10
6秒前
马户的崛起完成签到,获得积分10
7秒前
星辰大海应助坦率德地采纳,获得10
8秒前
鱼鱼子完成签到,获得积分20
14秒前
15秒前
哈哈哈哈完成签到,获得积分20
15秒前
gq100520发布了新的文献求助10
15秒前
山长子完成签到,获得积分10
17秒前
17秒前
18秒前
乐观的颦发布了新的文献求助10
20秒前
ivy发布了新的文献求助10
20秒前
20秒前
王焕玉完成签到,获得积分10
21秒前
丘比特应助不安的冷荷采纳,获得10
22秒前
ty完成签到,获得积分10
23秒前
坦率德地发布了新的文献求助10
23秒前
我真的还想再活五百年完成签到,获得积分10
25秒前
牛马完成签到 ,获得积分10
25秒前
纯真万言发布了新的文献求助10
25秒前
27秒前
JamesYang发布了新的文献求助10
27秒前
今后应助yyanxuemin919采纳,获得10
28秒前
daisyyy完成签到,获得积分10
28秒前
打打应助哈哈哈哈采纳,获得10
31秒前
科研通AI6应助ivy采纳,获得10
33秒前
33秒前
35秒前
情怀应助Mok采纳,获得10
37秒前
38秒前
39秒前
xun完成签到,获得积分10
40秒前
我是科研狗完成签到,获得积分10
41秒前
1280065188完成签到,获得积分20
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841