Simultaneous Prediction of Interaction Sites on the Protein and Peptide Sides of Complexes through Multilayer Graph Convolutional Networks

图形 计算机科学 对接(动物) 计算生物学 蛋白质-蛋白质相互作用 人工智能 化学 生物 生物化学 理论计算机科学 医学 护理部
作者
Kailong Li,Lijun Quan,Yelu Jiang,Hongjie Wu,Jian-Hong Wu,Yan Li,Yiting Zhou,Tingfang Wu,Qiang Lyu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (7): 2251-2262 被引量:3
标识
DOI:10.1021/acs.jcim.3c00192
摘要

Identifying the binding residues of protein–peptide complexes is essential for understanding protein function mechanisms and exploring drug discovery. Recently, many computational methods have been developed to predict the interaction sites of either protein or peptide. However, to our knowledge, no prediction method can simultaneously identify the interaction sites on both the protein and peptide sides. Here, we propose a deep graph convolutional network (GCN)-based method called GraphPPepIS to predict the interaction sites of protein–peptide complexes using protein and peptide structural information. We also propose a companion method, SeqPPepIS, for assisting with the lack of structural information and the flexibility of peptides. SepPPepIS replaces the peptide structural features in GraphPPepIS by learning features from peptide sequences. We performed a comprehensive evaluation of the benchmark data sets, and the results show that our two methods outperform state-of-the-art methods on the accurate interaction sites of both protein and peptide sides. We show that our methods can help improve protein–peptide docking. For docking data sets, our methods maintain robust performance in identifying binding sites, thereby enhancing the prediction of peptide binding poses. Finally, we visualized the analysis of protein and peptide graph embedding to demonstrate the learning ability of graph convolution in predicting interaction sites, which was mainly obtained through the shared parameters of a protein graph and peptide graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助Stellar777采纳,获得10
刚刚
xukaixuan001完成签到,获得积分10
刚刚
小李完成签到,获得积分10
1秒前
cmyohh完成签到 ,获得积分10
2秒前
雾见春完成签到 ,获得积分10
2秒前
沉默的香氛完成签到 ,获得积分10
2秒前
2秒前
勤奋花瓣完成签到,获得积分10
3秒前
Yara.H完成签到 ,获得积分10
4秒前
mumufan完成签到,获得积分10
5秒前
5秒前
5秒前
sheep完成签到,获得积分10
6秒前
李爱国应助开心采纳,获得10
6秒前
WangSir完成签到,获得积分10
6秒前
6秒前
雪白胡萝卜完成签到,获得积分10
7秒前
思源应助zhangshaoqi采纳,获得10
8秒前
默默的皮牙子应助小玉米采纳,获得10
9秒前
QYR完成签到,获得积分10
9秒前
wenjian完成签到,获得积分10
10秒前
Accept2024发布了新的文献求助10
10秒前
haru完成签到,获得积分10
11秒前
刻苦黎云完成签到,获得积分10
11秒前
11秒前
dddddd完成签到,获得积分10
11秒前
斯文败类应助飞秒激光啊采纳,获得10
13秒前
13秒前
我说苏卡你说不列完成签到,获得积分10
13秒前
mypang完成签到,获得积分10
13秒前
望望旺仔牛奶完成签到,获得积分10
14秒前
away完成签到,获得积分10
14秒前
老八完成签到,获得积分10
14秒前
ohceria完成签到,获得积分10
14秒前
hbkj完成签到,获得积分10
15秒前
chenchen发布了新的文献求助10
15秒前
15秒前
开心发布了新的文献求助10
16秒前
笨笨乘风完成签到,获得积分10
16秒前
独指蜗牛完成签到,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890