Simultaneous Prediction of Interaction Sites on the Protein and Peptide Sides of Complexes through Multilayer Graph Convolutional Networks

图形 计算机科学 对接(动物) 计算生物学 蛋白质-蛋白质相互作用 人工智能 化学 生物 生物化学 理论计算机科学 医学 护理部
作者
Kailong Li,Lijun Quan,Yelu Jiang,Hongjie Wu,Jian-Hong Wu,Yan Li,Yiting Zhou,Tingfang Wu,Qiang Lyu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (7): 2251-2262 被引量:3
标识
DOI:10.1021/acs.jcim.3c00192
摘要

Identifying the binding residues of protein–peptide complexes is essential for understanding protein function mechanisms and exploring drug discovery. Recently, many computational methods have been developed to predict the interaction sites of either protein or peptide. However, to our knowledge, no prediction method can simultaneously identify the interaction sites on both the protein and peptide sides. Here, we propose a deep graph convolutional network (GCN)-based method called GraphPPepIS to predict the interaction sites of protein–peptide complexes using protein and peptide structural information. We also propose a companion method, SeqPPepIS, for assisting with the lack of structural information and the flexibility of peptides. SepPPepIS replaces the peptide structural features in GraphPPepIS by learning features from peptide sequences. We performed a comprehensive evaluation of the benchmark data sets, and the results show that our two methods outperform state-of-the-art methods on the accurate interaction sites of both protein and peptide sides. We show that our methods can help improve protein–peptide docking. For docking data sets, our methods maintain robust performance in identifying binding sites, thereby enhancing the prediction of peptide binding poses. Finally, we visualized the analysis of protein and peptide graph embedding to demonstrate the learning ability of graph convolution in predicting interaction sites, which was mainly obtained through the shared parameters of a protein graph and peptide graph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理明杰完成签到 ,获得积分10
1秒前
隐形曼青应助俭朴的猫咪采纳,获得10
1秒前
隐形曼青应助呆萌老丁采纳,获得10
1秒前
2秒前
快乐的废物完成签到,获得积分10
2秒前
2秒前
guozizi发布了新的文献求助10
3秒前
3秒前
收费完成签到,获得积分20
3秒前
Xiaochou发布了新的文献求助10
5秒前
duchangzheng完成签到,获得积分10
5秒前
开始完成签到,获得积分10
5秒前
机智的紫丝完成签到,获得积分10
6秒前
6秒前
6秒前
zho发布了新的文献求助10
7秒前
天生圣人发布了新的文献求助10
7秒前
迫切发布了新的文献求助10
9秒前
dd完成签到,获得积分10
10秒前
劲秉应助魔幻的雁采纳,获得10
10秒前
dablack发布了新的文献求助10
11秒前
11秒前
收费关注了科研通微信公众号
12秒前
多情山蝶完成签到,获得积分10
12秒前
12秒前
儒雅书桃完成签到,获得积分10
13秒前
14秒前
猪在天上飞完成签到,获得积分10
16秒前
小四喜发布了新的文献求助10
16秒前
天生圣人完成签到,获得积分10
17秒前
loulan完成签到,获得积分10
17秒前
jie发布了新的文献求助10
18秒前
美好的元珊完成签到,获得积分10
18秒前
Moss发布了新的文献求助10
18秒前
21秒前
ding应助佳AOAOAO采纳,获得10
21秒前
所愿所得应助griffon采纳,获得10
22秒前
精明的满天完成签到 ,获得积分10
23秒前
23秒前
传奇3应助jie采纳,获得10
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479504
求助须知:如何正确求助?哪些是违规求助? 3070099
关于积分的说明 9116702
捐赠科研通 2761842
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700982
科研通“疑难数据库(出版商)”最低求助积分说明 699985