One-step ball-milling synthesis of cesium tungsten bronze nanoparticles and near-infrared shielding performance

材料科学 青铜色 电磁屏蔽 球磨机 纳米颗粒 纳米材料 冶金 退火(玻璃) 制作 纳米技术 复合材料 医学 病理 替代医学
作者
Peng Wang,Tongyao Liu,Shangwu Zhao,Zhen Yang,Zhikuan Ren,Wei Jiang,Xuchuan Jiang
出处
期刊:Ceramics International [Elsevier]
卷期号:49 (13): 21393-21401 被引量:19
标识
DOI:10.1016/j.ceramint.2023.03.268
摘要

Tungsten bronze (MxWO3) materials have been widely used as thermal insulation for architectural glass because of their higher near-infrared (NIR) light shielding capacity. To solve the problems encountered in solvothermal preparation with high costs and low yields, this study has developed a facile, eco-friendly, effective, but low-cost method, with no need for any annealing process, for promoting the large-scale fabrication of cesium tungsten bronze (CsxWO3, x = 0.32) nanomaterials for potential thermal insulation windows applications. In the proposed ball-milling process, the tungstic acid material could be reduced to hydro tungsten bronze (HxWO3) by cellulose, while the cesium ions (Cs+) could be gradually incorporated into the interspace until the formation of Cs0.32WO3 (Cs/W atomic ratio = 0.32), with an average particle size of ∼33 nm after a 15 h ball-milling process. The reaction mechanism has been investigated in detail via particle structural analysis and optical performance characterization. The obtained Cs0.32WO3 nanoparticles are dispersed in a solution composed of surfactant (s) and polymer (s) which can form a thin film with a thickness of about 2 μm on a glass substrate, by a spinning coating or casting method, to exhibit high visible (Vis) light transmittance (T566nm = 72.6%), and excellent NIR-shielding capability (T1388nm = 5.3%), reflected by good heat-insulating performance in practice use. This work will pave a new path for large-scale production of Cs0.32WO3 nanomaterials with low costs and high performance, beneficial for practical applications in energy-saving glass coatings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伞下铭发布了新的文献求助10
1秒前
1秒前
Voyage发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
科研小白完成签到,获得积分10
2秒前
YIZHIZOU发布了新的文献求助10
2秒前
2秒前
3秒前
栗子完成签到,获得积分20
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
faker完成签到,获得积分10
4秒前
yatou完成签到,获得积分10
5秒前
ww发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
syt完成签到 ,获得积分10
6秒前
Criminology34应助李丙首采纳,获得10
6秒前
6秒前
force完成签到 ,获得积分10
7秒前
7秒前
7秒前
yatou发布了新的文献求助10
8秒前
清浅发布了新的文献求助10
8秒前
8秒前
8秒前
子车茗应助LeichterL采纳,获得20
8秒前
小蘑菇应助远方采纳,获得10
9秒前
9秒前
YIZHIZOU完成签到,获得积分20
9秒前
熬夜波比应助虚心的语柔采纳,获得10
9秒前
森林完成签到,获得积分10
9秒前
Astronaut完成签到,获得积分10
10秒前
10秒前
10秒前
小二郎应助自由的尔蓉采纳,获得10
10秒前
科研小白发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667160
求助须知:如何正确求助?哪些是违规求助? 4884250
关于积分的说明 15118778
捐赠科研通 4826049
什么是DOI,文献DOI怎么找? 2583692
邀请新用户注册赠送积分活动 1537843
关于科研通互助平台的介绍 1496006