Data-driven state-of-health estimation for lithium-ion battery based on aging features

健康状况 电池(电) 计算机科学 锂离子电池 内阻 荷电状态 人工智能 功率(物理) 物理 量子力学
作者
Xining Li,Lingling Ju,Guangchao Geng,Quanyuan Jiang
出处
期刊:Energy [Elsevier BV]
卷期号:274: 127378-127378 被引量:52
标识
DOI:10.1016/j.energy.2023.127378
摘要

Reliable state-of-health (SOH) estimation is crucial to the safe operation of lithium-ion battery. Data-driven SOH estimation becomes a hot research topic with the booming of high-performance machine learning algorithms. The effectiveness of a data-driven approach will be enhanced significantly if the input features are extracted properly. In order to improve the SOH estimation accuracy, the features highly associated with battery degradation should be utilized in the data-driven model. In this paper, an aging feature extraction method based on electrochemical model (EM) is proposed to account for the battery degradation mechanisms. The aging features of EM such as charge transfer resistance, solid phase diffusion coefficient and electrode volume fraction are defined as internal health features (IHFs) for SOH estimation. Moreover, external health features (EHFs) are directly extracted from the voltage and temperature curves that split into multiple stages. Then, IHFs and multi-stage EHFs are selected appropriately for SOH estimation in offline and online application scenarios. Finally, two well-known machine learning algorithms are employed to construct data-driven SOH estimation model using IHFs and EHFs. Experimental data are used to prove that the proposed method can effectively improve the accuracy of SOH estimation under different application scenarios and battery charge–discharge modes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助酷炫的面包采纳,获得10
刚刚
外向的小翠完成签到,获得积分20
刚刚
大模型应助耍酷的芷雪采纳,获得10
2秒前
万能图书馆应助严笑容采纳,获得30
3秒前
传奇3应助RockLee采纳,获得10
4秒前
JamesPei应助Ki_Ayasato采纳,获得10
4秒前
5秒前
6秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
酷波er应助科研通管家采纳,获得30
7秒前
上官若男应助科研通管家采纳,获得30
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
JQ1130发布了新的文献求助10
8秒前
图图应助科研通管家采纳,获得60
8秒前
8秒前
trayheep应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
山花浪漫应助科研通管家采纳,获得20
8秒前
大模型应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
9秒前
SYLH应助科研通管家采纳,获得20
9秒前
CodeCraft应助踏实啤酒采纳,获得10
9秒前
yyyfff应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737566
求助须知:如何正确求助?哪些是违规求助? 3281296
关于积分的说明 10024292
捐赠科研通 2998016
什么是DOI,文献DOI怎么找? 1644966
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794