Quantifying stiffness and forces of tumor colonies and embryos using a magnetic microrobot

材料科学 刚度 牵引(地质) 牵引力 磁场 纳米技术 微尺度化学 复合材料 生物物理学 结构工程 物理 量子力学 生物 地貌学 地质学 工程类 数学教育 数学
作者
Erfan Mohagheghian,Junyu Luo,F. Max Yavitt,Fuxiang Wei,Parth Bhala,Kshitij Amar,Fazlur Rashid,Yuzheng Wang,Xingchen Liu,Chenyang Ji,Junwei Chen,David P. Arnold,Zhen Liu,Kristi S. Anseth,Ning Wang
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:8 (74): eadc9800-eadc9800 被引量:46
标识
DOI:10.1126/scirobotics.adc9800
摘要

Stiffness and forces are two fundamental quantities essential to living cells and tissues. However, it has been a challenge to quantify both 3D traction forces and stiffness (or modulus) using the same probe in vivo. Here, we describe an approach that overcomes this challenge by creating a magnetic microrobot probe with controllable functionality. Biocompatible ferromagnetic cobalt-platinum microcrosses were fabricated, and each microcross (about 30 micrometers) was trapped inside an arginine–glycine–aspartic acid–conjugated stiff poly(ethylene glycol) (PEG) round microgel (about 50 micrometers) using a microfluidic device. The stiff magnetic microrobot was seeded inside a cell colony and acted as a stiffness probe by rigidly rotating in response to an oscillatory magnetic field. Then, brief episodes of ultraviolet light exposure were applied to dynamically photodegrade and soften the fluorescent nanoparticle–embedded PEG microgel, whose deformation and 3D traction forces were quantified. Using the microrobot probe, we show that malignant tumor–repopulating cell colonies altered their modulus but not traction forces in response to different 3D substrate elasticities. Stiffness and 3D traction forces were measured, and both normal and shear traction force oscillations were observed in zebrafish embryos from blastula to gastrula. Mouse embryos generated larger tensile and compressive traction force oscillations than shear traction force oscillations during blastocyst. The microrobot probe with controllable functionality via magnetic fields could potentially be useful for studying the mechanoregulation of cells, tissues, and embryos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fan完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
heimazuo完成签到,获得积分10
3秒前
深情安青应助我我我采纳,获得10
4秒前
搜集达人应助英俊的白安采纳,获得10
4秒前
汉堡包应助英俊的白安采纳,获得10
4秒前
4秒前
5秒前
6秒前
李玉完成签到,获得积分20
6秒前
老福贵儿应助YANGLan采纳,获得10
7秒前
7秒前
Lee发布了新的文献求助10
7秒前
ding发布了新的文献求助10
7秒前
夕荀发布了新的文献求助10
7秒前
Hey发布了新的文献求助10
8秒前
9秒前
9秒前
jingzhe完成签到,获得积分10
10秒前
小天草水母完成签到 ,获得积分10
10秒前
天天快乐应助清栀采纳,获得10
11秒前
华仔应助我爱学习采纳,获得10
11秒前
风笑完成签到,获得积分10
11秒前
aaa关闭了aaa文献求助
11秒前
六月发布了新的文献求助10
12秒前
方方土应助阿馨采纳,获得10
12秒前
12秒前
七里香发布了新的文献求助10
13秒前
LZB完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
小巧向秋发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
wlingke应助熹光采纳,获得50
15秒前
zgl完成签到,获得积分10
15秒前
15秒前
百里守约完成签到 ,获得积分10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620548
求助须知:如何正确求助?哪些是违规求助? 4705184
关于积分的说明 14930630
捐赠科研通 4762246
什么是DOI,文献DOI怎么找? 2551059
邀请新用户注册赠送积分活动 1513711
关于科研通互助平台的介绍 1474633