Quantifying stiffness and forces of tumor colonies and embryos using a magnetic microrobot

材料科学 刚度 牵引(地质) 牵引力 磁场 纳米技术 微尺度化学 复合材料 生物物理学 结构工程 物理 量子力学 生物 地貌学 地质学 工程类 数学教育 数学
作者
Erfan Mohagheghian,Junyu Luo,F. Max Yavitt,Fuxiang Wei,Parth Bhala,Kshitij Amar,Fazlur Rashid,Yuzheng Wang,Xingchen Liu,Chenyang Ji,Junwei Chen,David P. Arnold,Zhen Liu,Kristi S. Anseth,Ning Wang
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:8 (74) 被引量:25
标识
DOI:10.1126/scirobotics.adc9800
摘要

Stiffness and forces are two fundamental quantities essential to living cells and tissues. However, it has been a challenge to quantify both 3D traction forces and stiffness (or modulus) using the same probe in vivo. Here, we describe an approach that overcomes this challenge by creating a magnetic microrobot probe with controllable functionality. Biocompatible ferromagnetic cobalt-platinum microcrosses were fabricated, and each microcross (about 30 micrometers) was trapped inside an arginine–glycine–aspartic acid–conjugated stiff poly(ethylene glycol) (PEG) round microgel (about 50 micrometers) using a microfluidic device. The stiff magnetic microrobot was seeded inside a cell colony and acted as a stiffness probe by rigidly rotating in response to an oscillatory magnetic field. Then, brief episodes of ultraviolet light exposure were applied to dynamically photodegrade and soften the fluorescent nanoparticle–embedded PEG microgel, whose deformation and 3D traction forces were quantified. Using the microrobot probe, we show that malignant tumor–repopulating cell colonies altered their modulus but not traction forces in response to different 3D substrate elasticities. Stiffness and 3D traction forces were measured, and both normal and shear traction force oscillations were observed in zebrafish embryos from blastula to gastrula. Mouse embryos generated larger tensile and compressive traction force oscillations than shear traction force oscillations during blastocyst. The microrobot probe with controllable functionality via magnetic fields could potentially be useful for studying the mechanoregulation of cells, tissues, and embryos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空蓝完成签到,获得积分10
刚刚
刚刚
英姑应助dery采纳,获得10
1秒前
王电催化发布了新的文献求助10
2秒前
rcrc111完成签到 ,获得积分10
2秒前
李穆迪发布了新的文献求助10
2秒前
3秒前
司空蓝发布了新的文献求助10
3秒前
可爱的函函应助123456采纳,获得20
3秒前
重要冬日发布了新的文献求助10
4秒前
小丫完成签到,获得积分20
5秒前
zwd发布了新的文献求助10
5秒前
6秒前
6秒前
珊珊完成签到,获得积分20
6秒前
6秒前
木杉完成签到,获得积分20
9秒前
封荟发布了新的文献求助10
10秒前
10秒前
11秒前
科研通AI2S应助光亮友安采纳,获得10
11秒前
11秒前
DrZOU完成签到,获得积分10
11秒前
joy发布了新的文献求助10
12秒前
幌子完成签到,获得积分10
12秒前
科目三应助阿冰采纳,获得10
13秒前
科研通AI2S应助不爱吃鳗鱼采纳,获得10
13秒前
m彬m彬完成签到 ,获得积分10
14秒前
重要冬日完成签到,获得积分20
14秒前
manman完成签到,获得积分10
14秒前
DrZOU发布了新的文献求助30
15秒前
啾啾完成签到,获得积分10
15秒前
jikou888发布了新的文献求助10
15秒前
Byron发布了新的文献求助30
16秒前
左彦完成签到,获得积分10
17秒前
缪连虎发布了新的文献求助10
17秒前
小鹿完成签到,获得积分10
18秒前
Elma完成签到,获得积分10
18秒前
充电宝应助草莓派采纳,获得10
18秒前
小鹿发布了新的文献求助10
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240186
求助须知:如何正确求助?哪些是违规求助? 2885221
关于积分的说明 8237360
捐赠科研通 2553498
什么是DOI,文献DOI怎么找? 1381664
科研通“疑难数据库(出版商)”最低求助积分说明 649317
邀请新用户注册赠送积分活动 625009