Quantifying stiffness and forces of tumor colonies and embryos using a magnetic microrobot

材料科学 刚度 牵引(地质) 牵引力 磁场 纳米技术 微尺度化学 复合材料 生物物理学 结构工程 物理 量子力学 生物 地貌学 地质学 工程类 数学教育 数学
作者
Erfan Mohagheghian,Junyu Luo,F. Max Yavitt,Fuxiang Wei,Parth Bhala,Kshitij Amar,Fazlur Rashid,Yuzheng Wang,Xingchen Liu,Chenyang Ji,Junwei Chen,David P. Arnold,Zhen Liu,Kristi S. Anseth,Ning Wang
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:8 (74) 被引量:25
标识
DOI:10.1126/scirobotics.adc9800
摘要

Stiffness and forces are two fundamental quantities essential to living cells and tissues. However, it has been a challenge to quantify both 3D traction forces and stiffness (or modulus) using the same probe in vivo. Here, we describe an approach that overcomes this challenge by creating a magnetic microrobot probe with controllable functionality. Biocompatible ferromagnetic cobalt-platinum microcrosses were fabricated, and each microcross (about 30 micrometers) was trapped inside an arginine–glycine–aspartic acid–conjugated stiff poly(ethylene glycol) (PEG) round microgel (about 50 micrometers) using a microfluidic device. The stiff magnetic microrobot was seeded inside a cell colony and acted as a stiffness probe by rigidly rotating in response to an oscillatory magnetic field. Then, brief episodes of ultraviolet light exposure were applied to dynamically photodegrade and soften the fluorescent nanoparticle–embedded PEG microgel, whose deformation and 3D traction forces were quantified. Using the microrobot probe, we show that malignant tumor–repopulating cell colonies altered their modulus but not traction forces in response to different 3D substrate elasticities. Stiffness and 3D traction forces were measured, and both normal and shear traction force oscillations were observed in zebrafish embryos from blastula to gastrula. Mouse embryos generated larger tensile and compressive traction force oscillations than shear traction force oscillations during blastocyst. The microrobot probe with controllable functionality via magnetic fields could potentially be useful for studying the mechanoregulation of cells, tissues, and embryos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琅琊为刃完成签到,获得积分10
1秒前
酷波er应助hhh采纳,获得10
1秒前
1秒前
小巧的香氛完成签到 ,获得积分10
2秒前
2秒前
2秒前
zxcv23发布了新的文献求助10
2秒前
没有名称发布了新的文献求助10
2秒前
3秒前
3秒前
zier完成签到 ,获得积分10
4秒前
阡陌完成签到,获得积分10
4秒前
华仔应助毕业就好采纳,获得10
4秒前
liyi发布了新的文献求助10
4秒前
难过小天鹅完成签到,获得积分10
5秒前
非常可爱发布了新的文献求助20
5秒前
eee发布了新的文献求助10
5秒前
幸福胡萝卜完成签到,获得积分10
5秒前
6秒前
科研通AI5应助琅琊为刃采纳,获得10
6秒前
6秒前
6秒前
6秒前
寒冷的奇异果完成签到,获得积分10
7秒前
hziyu发布了新的文献求助10
8秒前
8秒前
野性的南蕾完成签到,获得积分10
8秒前
毛毛哦啊发布了新的文献求助10
8秒前
zzzzzk发布了新的文献求助10
8秒前
8秒前
lalala发布了新的文献求助10
9秒前
三里墩头应助oldlee采纳,获得20
9秒前
9秒前
iNk应助西安小小朱采纳,获得10
9秒前
CodeCraft应助西安小小朱采纳,获得10
9秒前
无花果应助爱学习的小迟采纳,获得10
10秒前
哭泣的映寒完成签到 ,获得积分10
10秒前
xls完成签到,获得积分10
10秒前
10秒前
故意的傲玉应助圈圈采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672