Quantifying stiffness and forces of tumor colonies and embryos using a magnetic microrobot

材料科学 刚度 牵引(地质) 牵引力 磁场 纳米技术 微尺度化学 复合材料 生物物理学 结构工程 物理 量子力学 生物 地貌学 地质学 工程类 数学教育 数学
作者
Erfan Mohagheghian,Junyu Luo,F. Max Yavitt,Fuxiang Wei,Parth Bhala,Kshitij Amar,Fazlur Rashid,Yuzheng Wang,Xingchen Liu,Chenyang Ji,Junwei Chen,David P. Arnold,Zhen Liu,Kristi S. Anseth,Ning Wang
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:8 (74): eadc9800-eadc9800 被引量:46
标识
DOI:10.1126/scirobotics.adc9800
摘要

Stiffness and forces are two fundamental quantities essential to living cells and tissues. However, it has been a challenge to quantify both 3D traction forces and stiffness (or modulus) using the same probe in vivo. Here, we describe an approach that overcomes this challenge by creating a magnetic microrobot probe with controllable functionality. Biocompatible ferromagnetic cobalt-platinum microcrosses were fabricated, and each microcross (about 30 micrometers) was trapped inside an arginine–glycine–aspartic acid–conjugated stiff poly(ethylene glycol) (PEG) round microgel (about 50 micrometers) using a microfluidic device. The stiff magnetic microrobot was seeded inside a cell colony and acted as a stiffness probe by rigidly rotating in response to an oscillatory magnetic field. Then, brief episodes of ultraviolet light exposure were applied to dynamically photodegrade and soften the fluorescent nanoparticle–embedded PEG microgel, whose deformation and 3D traction forces were quantified. Using the microrobot probe, we show that malignant tumor–repopulating cell colonies altered their modulus but not traction forces in response to different 3D substrate elasticities. Stiffness and 3D traction forces were measured, and both normal and shear traction force oscillations were observed in zebrafish embryos from blastula to gastrula. Mouse embryos generated larger tensile and compressive traction force oscillations than shear traction force oscillations during blastocyst. The microrobot probe with controllable functionality via magnetic fields could potentially be useful for studying the mechanoregulation of cells, tissues, and embryos.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚拟的灵槐完成签到,获得积分20
刚刚
zz完成签到,获得积分10
刚刚
刚刚
VuuVuu发布了新的文献求助10
刚刚
科研通AI2S应助cooling采纳,获得10
1秒前
开放如天完成签到 ,获得积分10
2秒前
Owen应助xiemeili采纳,获得10
2秒前
2秒前
TWOTP发布了新的文献求助10
3秒前
月狐完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
XD完成签到,获得积分20
3秒前
wentyli发布了新的文献求助10
4秒前
轻松盼雁完成签到,获得积分10
4秒前
螃蟹发布了新的文献求助10
5秒前
chongjian完成签到,获得积分10
5秒前
Ran-HT完成签到,获得积分0
6秒前
6秒前
贤惠的枫完成签到 ,获得积分10
7秒前
7秒前
wang完成签到 ,获得积分10
7秒前
菜穗子完成签到,获得积分10
7秒前
cooling给cooling的求助进行了留言
8秒前
彭于晏应助@@@采纳,获得10
9秒前
paipai完成签到 ,获得积分10
9秒前
10秒前
滟滟完成签到,获得积分10
10秒前
Wjc完成签到,获得积分20
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
脑洞疼应助lunhui6453采纳,获得10
12秒前
小黄完成签到 ,获得积分10
14秒前
mochi发布了新的文献求助10
14秒前
TWOTP完成签到,获得积分10
14秒前
QDF发布了新的文献求助10
14秒前
丘比特应助在南方看北方采纳,获得10
14秒前
15秒前
15秒前
DryDry完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952