Weakly Supervised Transfer Learning for Multi-label Appliance Classification

计算机科学 学习迁移 标记数据 利用 人工智能 卷积神经网络 机器学习 任务(项目管理) 领域(数学分析) 样品(材料) 骨料(复合) 半监督学习 监督学习 传输(计算) 人工神经网络 并行计算 数学分析 化学 材料科学 计算机安全 管理 数学 色谱法 经济 复合材料
作者
Giulia Tanoni,Emanuele Principi,Luigi Mandolini,Stefano Squartini
出处
期刊:Communications in computer and information science 卷期号:: 360-375 被引量:1
标识
DOI:10.1007/978-3-031-24801-6_26
摘要

Non-intrusive Load Monitoring refers to the techniques for providing detailed information on appliances’ states or their energy consumption by measuring only aggregate electrical parameters. Supervised deep neural networks have reached the state-of-the-art in this task, and to improve the performance when training and test data domains differ, transfer learning techniques have been successfully applied. However, these techniques rely on data labeled sample-by-sample (strong labels) to be effective, which can be particularly costly in transfer learning since it requires collecting and annotating data in the target domain. To mitigate this issue, this work proposes a cross-domain transfer learning approach based on weak supervision and Convolutional Recurrent Neural Networks for multi-label appliance classification. The proposed method is based on the concept of inexact supervision by modeling NILM as a Multiple Instance Learning problem, exploiting different and less costly annotations called weak labels. The learning strategy is able to exploit weak labels both for pre-training and fine-tuning the models. UK-DALE and REFIT are used in the experiments as source and target domain datasets to train, fine-tune, and evaluate the networks. The results demonstrate the effectiveness of the proposed method compared to the related pre-trained models. In particular, when the model is pre-trained on strongly and weakly labeled data of UK-DALE and then fine-tuned only on REFIT weak labels, the performance improves by 20.3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助泓竹采纳,获得10
刚刚
2秒前
Pauline发布了新的文献求助10
2秒前
2秒前
狗狗狗完成签到,获得积分20
2秒前
2秒前
3秒前
4秒前
5秒前
Nathan完成签到,获得积分10
6秒前
6秒前
可爱的函函应助DONNYTIO采纳,获得30
7秒前
zdy完成签到,获得积分20
7秒前
18746005898发布了新的文献求助30
7秒前
打开链接L发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
DX完成签到,获得积分10
9秒前
哈哈哈哈发布了新的文献求助10
9秒前
10秒前
10秒前
Ava应助老实的栾采纳,获得10
12秒前
13秒前
天外来物发布了新的文献求助10
13秒前
红烧肉发布了新的文献求助10
13秒前
李健的小迷弟应助玉玉采纳,获得10
14秒前
付佟秋烟完成签到 ,获得积分10
14秒前
14秒前
15秒前
人间烟火发布了新的文献求助10
15秒前
16秒前
ssk发布了新的文献求助10
17秒前
17秒前
NexusExplorer应助夜之枫采纳,获得10
18秒前
FashionBoy应助18746005898采纳,获得10
18秒前
聪聪great发布了新的文献求助10
19秒前
一条热带鱼完成签到,获得积分10
20秒前
杨春末发布了新的文献求助10
21秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Keywords: explanatory textual sequences, motivation, self-determination, academic performance, math, artificial intelligence 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267288
求助须知:如何正确求助?哪些是违规求助? 2906812
关于积分的说明 8339691
捐赠科研通 2577377
什么是DOI,文献DOI怎么找? 1400921
科研通“疑难数据库(出版商)”最低求助积分说明 654973
邀请新用户注册赠送积分活动 633892