Characterization of oxidative damage induced by nanoparticles via mechanism-driven machine learning approaches

氧化应激 随机森林 超氧化物歧化酶 谷胱甘肽过氧化物酶 活性氧 丙二醛 机器学习 过氧化氢酶 多层感知器 谷胱甘肽 人工智能 环境化学 环境科学 化学 生物系统 生物 计算机科学 人工神经网络 生物化学
作者
Xiaoqing Wang,Fei Li,Yuefa Teng,Chenglong Ji,Huifeng Wu
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:871: 162103-162103 被引量:7
标识
DOI:10.1016/j.scitotenv.2023.162103
摘要

The wide application of TiO2-based engineered nanoparticles (nTiO2) inevitably led to release into aquatic ecosystems. Importantly, increasing studies have emphasized the high risks of nTiO2 to coastal environments. Bivalves, the representative benthic filter feeders in coastal zones, acted as important roles to assess and monitor the toxic effects of nanoparticles. Oxidative damage was one of the main toxic mechanisms of nTiO2 on bivalves, but the experimental variables/nanomaterial characteristics were diverse and the toxicity mechanism was complex. Therefore, it was very necessary to develop machine learning model to characterize and predict the potential toxicity. In this study, thirty-six machine learning models were built by nanodescriptors combined with six machine learning algorithms. Among them, random forest (RF) – catalase (CAT), k-neighbors classifier (KNN) - glutathione peroxidase (GPx), neural networks - multilayer perceptron (ANN) – glutathione s-transferase (GST), random forest (RF) - malondialdehyde (MDA), random forest (RF) - reactive oxygen species (ROS), and extreme gradient boosting decision tree (XGB) - superoxide dismutase (SOD) models performed good with high accuracy and balanced accuracy for both training sets and external validation sets. Furthermore, the best model revealed the predominant factors (exposure concentration, exposure periods, and exposure matrix) influencing the oxidative stress induced by nTiO2. These results showed that high exposure concentrations and short exposure-intervals tended to cause oxidative damage to bivalves. In addition, gills and digestive glands could be vulnerable to nTiO2-induced oxidative damage as tissues/organs differences were the important factors controlling MDA activity. This study provided insights into important nano-features responsible for the different indicators of oxidative stress and thereby extended the application of machine learning approaches in toxicological assessment for nanoparticles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛77完成签到,获得积分10
刚刚
wangmaosen完成签到,获得积分10
1秒前
1秒前
weiyajing发布了新的文献求助10
1秒前
大个应助肉球球采纳,获得10
1秒前
安静参完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
午午午午完成签到 ,获得积分10
4秒前
科研通AI5应助Xxx采纳,获得10
4秒前
5秒前
5秒前
5秒前
CHOSEN.1完成签到,获得积分10
6秒前
yuekunyang发布了新的文献求助30
6秒前
小二郎应助布丁采纳,获得10
6秒前
马尔斯发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
xinxin完成签到,获得积分10
7秒前
wangmaosen发布了新的文献求助10
7秒前
9秒前
科研通AI5应助qq采纳,获得10
9秒前
科研通AI5应助跳跃的浩阑采纳,获得10
10秒前
木可南完成签到,获得积分10
10秒前
李\J发布了新的文献求助10
11秒前
ppp发布了新的文献求助10
12秒前
12秒前
肉球球发布了新的文献求助10
12秒前
13秒前
糟糕的沂发布了新的文献求助10
13秒前
14秒前
14秒前
所所应助简单以宁2采纳,获得10
15秒前
小六九完成签到 ,获得积分10
16秒前
汤泽琪发布了新的文献求助10
17秒前
17秒前
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774881
求助须知:如何正确求助?哪些是违规求助? 3320672
关于积分的说明 10201424
捐赠科研通 3035544
什么是DOI,文献DOI怎么找? 1665536
邀请新用户注册赠送积分活动 796983
科研通“疑难数据库(出版商)”最低求助积分说明 757683