An intelligent scanning strategy (SmartScan) for improved part quality in multi-laser PBF additive manufacturing

激光器 残余应力 材料科学 序列(生物学) 残余物 分布(数学) 融合 激光扫描 功能(生物学) 工作(物理) 变形(气象学) 热的 算法 计算机科学 数学优化 光学 机械工程 数学 数学分析 物理 复合材料 语言学 哲学 进化生物学 生物 气象学 遗传学 工程类
作者
He Chuan,Keval S. Ramani,Chinedum E. Okwudire
出处
期刊:Additive manufacturing [Elsevier]
卷期号:64: 103427-103427 被引量:7
标识
DOI:10.1016/j.addma.2023.103427
摘要

To enable faster production and/or the manufacture of large parts, multi-laser powder bed fusion (PBF) systems are increasingly being adopted in practice. There is also research indicating that multiple lasers could be used to improve processing conditions in PBF. However, parts produced by single-laser and multi-laser PBF are susceptible to residual stress, deformation, and other defects that are strongly associated with non-uniform temperature distribution. The authors, in their prior work, have proposed an intelligent scan sequence optimization approach, called SmartScan, that uses a physics-based thermal model to achieve uniform temperature distribution and reduced residual stress and deformation. However, SmartScan is currently only applicable to single-laser PBF systems, where it is used for optimizing the sequence of scanning features (i.e., repeating units) of a scan pattern (e.g., a stripe or island). This paper generalizes SmartScan to multi-laser systems and shows that the complexity of the resulting solution grows combinatorially as a function of the number of lasers and scanned features, making it computationally inefficient. To address this issue, it proposes a sequential approximation to the combinatorial solution of SmartScan for multi-laser PBF systems resulting in a solution whose complexity grows linearly with the number of features. Through numerical studies, the sequential approximation is shown to substantially improve computational efficiency, compared to the combinatorial approach, without significant loss of optimality. Adopting the sequential solution, simulations and experiments involving laser marking of stainless steel 316 L plates are used to demonstrate the effectiveness of SmartScan in achieving more uniform temperature distribution compared to heuristic scan sequences in multi-laser PBF. As a result, SmartScan yields up to 40% reduction in measured plate deformation compared to the heuristic approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lm发布了新的文献求助10
刚刚
LPH01发布了新的文献求助10
刚刚
大胆诗云发布了新的文献求助10
刚刚
无极微光应助张雯雯采纳,获得20
1秒前
南风南下发布了新的文献求助10
1秒前
1秒前
2秒前
循循完成签到,获得积分10
2秒前
2秒前
共享精神应助忧虑的安青采纳,获得10
3秒前
3秒前
打打应助Yanhai采纳,获得10
3秒前
英俊的铭应助111采纳,获得10
3秒前
CCD完成签到,获得积分10
4秒前
4秒前
6秒前
恩善发布了新的文献求助10
7秒前
Wei完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
深情安青应助南风南下采纳,获得200
9秒前
LPH01完成签到,获得积分10
9秒前
慈祥的夏岚完成签到,获得积分10
9秒前
yizhimcfu发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
ilyaxxx发布了新的文献求助10
10秒前
隋黎完成签到 ,获得积分10
12秒前
我我我发布了新的文献求助10
13秒前
朴素的玫瑰完成签到,获得积分20
13秒前
xxfsx应助郭郭盖过采纳,获得20
13秒前
14秒前
小盆呐发布了新的文献求助10
14秒前
14秒前
饱满丹琴发布了新的文献求助20
15秒前
lonelymusic完成签到,获得积分10
15秒前
木通完成签到,获得积分10
15秒前
奕柯完成签到,获得积分10
16秒前
Lucas应助猪哥哥采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513523
求助须知:如何正确求助?哪些是违规求助? 4607732
关于积分的说明 14506652
捐赠科研通 4543272
什么是DOI,文献DOI怎么找? 2489491
邀请新用户注册赠送积分活动 1471450
关于科研通互助平台的介绍 1443447