Quantifying disease-interactions through co-occurrence matrices to predict early onset colorectal cancer

结肠镜检查 结直肠癌 急诊分诊台 共病 医学诊断 疾病 人口 指南 癌症 医学 家族史 内科学 急诊医学 病理 环境卫生
作者
Pankush Kalgotra,Ramesh Sharda,Sravanthi Parasa
出处
期刊:Decision Support Systems [Elsevier]
卷期号:168: 113929-113929 被引量:3
标识
DOI:10.1016/j.dss.2023.113929
摘要

Colorectal cancer (CRC) is the third most common cancer in terms of the number of cases and deaths in men and women in the USA. According to the Centers for Disease Control and Prevention, the CRC screening compliance rate remains low in the United States. It is even more concerning that the number of cases and deaths due to CRC is increasing in the younger population, for which there is no guideline to get colonoscopy screening. In this paper, we develop a novel network-based model to identify patients under 50 years of age having a high risk of CRC, particularly those who do not have a family history. Our model can help predict which patients are at risk of developing colorectal cancer to aid the practicing primary care physician and gastroenterologist to triage patients into meaningful risk groups to provide accelerated diagnostic steps and care to these patients. The model uses our proposed variables created through comorbidity network matrices obtained from CRC and non-CRC patients as inputs. We used the electronic medical records of thousands of CRC and non-CRC patients to develop and validate the models. Our model for younger patients correctly predicted 73.2% of the patients with future diagnoses with an area under the ROC curve of 0.81. At the 50% sensitivity, the false positive rate was 11.5%. The performance of our model is the highest in the current state-of-the-art. Our proposed variables quantifying the interactions between multiple diseases can also be adapted in future predictions of other diseases in a patient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
健壮的尔烟完成签到,获得积分10
1秒前
1秒前
3秒前
板砖小中医完成签到,获得积分10
3秒前
加油发布了新的文献求助10
4秒前
5秒前
ddd发布了新的文献求助10
5秒前
文艺人生发布了新的文献求助10
6秒前
爱吃芋头酥完成签到 ,获得积分10
6秒前
7秒前
沉默樱桃发布了新的文献求助10
7秒前
9秒前
luonq1119完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
可爱的函函应助mm采纳,获得10
11秒前
11秒前
ding应助郎飞结采纳,获得10
12秒前
12秒前
白小白发布了新的文献求助10
13秒前
14秒前
16秒前
摆渡人发布了新的文献求助20
17秒前
酿酿花0729完成签到,获得积分10
17秒前
17秒前
Saunak发布了新的文献求助10
19秒前
烤地瓜完成签到,获得积分10
19秒前
hezt发布了新的文献求助10
20秒前
24秒前
25秒前
可靠幼旋应助小巧的可仁采纳,获得40
26秒前
可可林发布了新的文献求助10
27秒前
充电宝应助因为某篇文献采纳,获得20
27秒前
芬芬完成签到,获得积分10
29秒前
30秒前
郎飞结发布了新的文献求助10
31秒前
31秒前
nn完成签到 ,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309982
求助须知:如何正确求助?哪些是违规求助? 2943089
关于积分的说明 8512665
捐赠科研通 2618199
什么是DOI,文献DOI怎么找? 1430922
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490