Quantifying disease-interactions through co-occurrence matrices to predict early onset colorectal cancer

结肠镜检查 结直肠癌 急诊分诊台 共病 医学诊断 疾病 人口 指南 癌症 医学 家族史 内科学 急诊医学 病理 环境卫生
作者
Pankush Kalgotra,Ramesh Sharda,Sravanthi Parasa
出处
期刊:Decision Support Systems [Elsevier]
卷期号:168: 113929-113929 被引量:3
标识
DOI:10.1016/j.dss.2023.113929
摘要

Colorectal cancer (CRC) is the third most common cancer in terms of the number of cases and deaths in men and women in the USA. According to the Centers for Disease Control and Prevention, the CRC screening compliance rate remains low in the United States. It is even more concerning that the number of cases and deaths due to CRC is increasing in the younger population, for which there is no guideline to get colonoscopy screening. In this paper, we develop a novel network-based model to identify patients under 50 years of age having a high risk of CRC, particularly those who do not have a family history. Our model can help predict which patients are at risk of developing colorectal cancer to aid the practicing primary care physician and gastroenterologist to triage patients into meaningful risk groups to provide accelerated diagnostic steps and care to these patients. The model uses our proposed variables created through comorbidity network matrices obtained from CRC and non-CRC patients as inputs. We used the electronic medical records of thousands of CRC and non-CRC patients to develop and validate the models. Our model for younger patients correctly predicted 73.2% of the patients with future diagnoses with an area under the ROC curve of 0.81. At the 50% sensitivity, the false positive rate was 11.5%. The performance of our model is the highest in the current state-of-the-art. Our proposed variables quantifying the interactions between multiple diseases can also be adapted in future predictions of other diseases in a patient.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助来自大西洋的超采纳,获得10
1秒前
1秒前
无私的以冬完成签到,获得积分10
1秒前
谨慎鸽子完成签到 ,获得积分10
1秒前
充电宝应助yhhhhh采纳,获得10
2秒前
JamesPei应助kasumin采纳,获得10
2秒前
3秒前
归尘发布了新的文献求助10
3秒前
现代的天与完成签到 ,获得积分20
3秒前
晨昏蒙影完成签到 ,获得积分10
3秒前
科研大王关注了科研通微信公众号
4秒前
buyuan完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
周国煌发布了新的文献求助10
4秒前
高源伯发布了新的文献求助10
4秒前
superhanlei发布了新的文献求助10
4秒前
4秒前
传奇3应助沉静的樱桃采纳,获得80
5秒前
5秒前
5秒前
科研通AI6.1应助萌萌采纳,获得10
6秒前
我我我完成签到,获得积分10
6秒前
王晨完成签到,获得积分10
6秒前
小蘑菇应助猪猪hero采纳,获得10
6秒前
烟花应助三木采纳,获得10
7秒前
小二郎应助zyzy1996采纳,获得30
7秒前
汉堡发布了新的文献求助10
7秒前
我是老大应助Echo采纳,获得30
7秒前
天天开心完成签到,获得积分10
9秒前
9秒前
SUNLE发布了新的文献求助10
9秒前
superhanlei完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
乐乐应助befond采纳,获得10
10秒前
AHR发布了新的文献求助10
11秒前
12秒前
所所应助包容蛋挞采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775976
求助须知:如何正确求助?哪些是违规求助? 5627280
关于积分的说明 15440657
捐赠科研通 4908271
什么是DOI,文献DOI怎么找? 2641135
邀请新用户注册赠送积分活动 1588932
关于科研通互助平台的介绍 1543784