已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantifying disease-interactions through co-occurrence matrices to predict early onset colorectal cancer

结肠镜检查 结直肠癌 急诊分诊台 共病 医学诊断 疾病 人口 指南 癌症 医学 家族史 内科学 急诊医学 病理 环境卫生
作者
Pankush Kalgotra,Ramesh Sharda,Sravanthi Parasa
出处
期刊:Decision Support Systems [Elsevier]
卷期号:168: 113929-113929 被引量:3
标识
DOI:10.1016/j.dss.2023.113929
摘要

Colorectal cancer (CRC) is the third most common cancer in terms of the number of cases and deaths in men and women in the USA. According to the Centers for Disease Control and Prevention, the CRC screening compliance rate remains low in the United States. It is even more concerning that the number of cases and deaths due to CRC is increasing in the younger population, for which there is no guideline to get colonoscopy screening. In this paper, we develop a novel network-based model to identify patients under 50 years of age having a high risk of CRC, particularly those who do not have a family history. Our model can help predict which patients are at risk of developing colorectal cancer to aid the practicing primary care physician and gastroenterologist to triage patients into meaningful risk groups to provide accelerated diagnostic steps and care to these patients. The model uses our proposed variables created through comorbidity network matrices obtained from CRC and non-CRC patients as inputs. We used the electronic medical records of thousands of CRC and non-CRC patients to develop and validate the models. Our model for younger patients correctly predicted 73.2% of the patients with future diagnoses with an area under the ROC curve of 0.81. At the 50% sensitivity, the false positive rate was 11.5%. The performance of our model is the highest in the current state-of-the-art. Our proposed variables quantifying the interactions between multiple diseases can also be adapted in future predictions of other diseases in a patient.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助科研通管家采纳,获得10
刚刚
ceeray23应助科研通管家采纳,获得10
刚刚
刚刚
zzzrrr完成签到 ,获得积分10
1秒前
皮皮完成签到 ,获得积分10
3秒前
zhenghang完成签到,获得积分10
8秒前
Atopos完成签到,获得积分10
9秒前
Jepsen完成签到 ,获得积分10
9秒前
AllenFeng发布了新的文献求助20
9秒前
猪头小队长完成签到,获得积分10
12秒前
克拉拉拉发布了新的文献求助10
15秒前
西瓜撞地球完成签到,获得积分10
16秒前
矜天完成签到 ,获得积分10
17秒前
嘻嘻嘻发布了新的文献求助20
18秒前
zzz发布了新的文献求助10
19秒前
23秒前
PDE完成签到,获得积分10
24秒前
万能图书馆应助原野小年采纳,获得10
26秒前
CodeCraft应助ttkx采纳,获得10
27秒前
30秒前
faaami应助AllenFeng采纳,获得10
30秒前
32秒前
动听的荧完成签到 ,获得积分10
33秒前
橘笙完成签到,获得积分10
33秒前
学不完了完成签到 ,获得积分10
33秒前
ryanfeng完成签到,获得积分0
34秒前
蝈蝈完成签到,获得积分10
36秒前
细心白竹完成签到 ,获得积分10
36秒前
原野小年发布了新的文献求助10
38秒前
橘笙发布了新的文献求助10
39秒前
逍遥子0211完成签到,获得积分10
40秒前
dydydyd完成签到,获得积分10
41秒前
瘦瘦乌龟完成签到 ,获得积分10
42秒前
徐自豪完成签到 ,获得积分10
43秒前
倷倷完成签到 ,获得积分10
45秒前
FRANKFANG发布了新的文献求助10
45秒前
风中的雪完成签到,获得积分10
46秒前
Tales完成签到 ,获得积分10
47秒前
fengliurencai完成签到,获得积分10
48秒前
Gun完成签到,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5567979
求助须知:如何正确求助?哪些是违规求助? 4652510
关于积分的说明 14701351
捐赠科研通 4594378
什么是DOI,文献DOI怎么找? 2520845
邀请新用户注册赠送积分活动 1492790
关于科研通互助平台的介绍 1463674