亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantifying disease-interactions through co-occurrence matrices to predict early onset colorectal cancer

结肠镜检查 结直肠癌 急诊分诊台 共病 医学诊断 疾病 人口 指南 癌症 医学 家族史 内科学 急诊医学 病理 环境卫生
作者
Pankush Kalgotra,Ramesh Sharda,Sravanthi Parasa
出处
期刊:Decision Support Systems [Elsevier]
卷期号:168: 113929-113929 被引量:3
标识
DOI:10.1016/j.dss.2023.113929
摘要

Colorectal cancer (CRC) is the third most common cancer in terms of the number of cases and deaths in men and women in the USA. According to the Centers for Disease Control and Prevention, the CRC screening compliance rate remains low in the United States. It is even more concerning that the number of cases and deaths due to CRC is increasing in the younger population, for which there is no guideline to get colonoscopy screening. In this paper, we develop a novel network-based model to identify patients under 50 years of age having a high risk of CRC, particularly those who do not have a family history. Our model can help predict which patients are at risk of developing colorectal cancer to aid the practicing primary care physician and gastroenterologist to triage patients into meaningful risk groups to provide accelerated diagnostic steps and care to these patients. The model uses our proposed variables created through comorbidity network matrices obtained from CRC and non-CRC patients as inputs. We used the electronic medical records of thousands of CRC and non-CRC patients to develop and validate the models. Our model for younger patients correctly predicted 73.2% of the patients with future diagnoses with an area under the ROC curve of 0.81. At the 50% sensitivity, the false positive rate was 11.5%. The performance of our model is the highest in the current state-of-the-art. Our proposed variables quantifying the interactions between multiple diseases can also be adapted in future predictions of other diseases in a patient.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小fei完成签到,获得积分10
5秒前
JamesPei应助如意的沛萍采纳,获得10
11秒前
麻辣薯条完成签到,获得积分10
15秒前
Emma关注了科研通微信公众号
19秒前
时尚身影完成签到,获得积分10
20秒前
21秒前
leoduo完成签到,获得积分0
24秒前
SSY发布了新的文献求助10
26秒前
流苏2完成签到,获得积分10
29秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
toutou应助科研通管家采纳,获得10
33秒前
toutou应助科研通管家采纳,获得10
33秒前
帝国之花应助科研通管家采纳,获得10
33秒前
栗子完成签到,获得积分10
33秒前
35秒前
37秒前
40秒前
mjjmm发布了新的文献求助10
43秒前
量子星尘发布了新的文献求助10
51秒前
54秒前
aidengu完成签到 ,获得积分10
55秒前
TEMPO发布了新的文献求助10
1分钟前
aidengu发布了新的文献求助30
1分钟前
TEMPO完成签到,获得积分10
1分钟前
1分钟前
yanzilin完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
友好谷蓝发布了新的文献求助10
1分钟前
美美发布了新的文献求助10
1分钟前
轻松新之发布了新的文献求助10
1分钟前
乐乐应助友好谷蓝采纳,获得10
1分钟前
1分钟前
火星上映易完成签到,获得积分10
1分钟前
wanci应助美美采纳,获得10
1分钟前
耳东完成签到,获得积分20
2分钟前
2分钟前
eeevaxxx完成签到 ,获得积分10
2分钟前
sys549发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772620
求助须知:如何正确求助?哪些是违规求助? 5600468
关于积分的说明 15429844
捐赠科研通 4905555
什么是DOI,文献DOI怎么找? 2639480
邀请新用户注册赠送积分活动 1587379
关于科研通互助平台的介绍 1542312