Quantifying disease-interactions through co-occurrence matrices to predict early onset colorectal cancer

结肠镜检查 结直肠癌 急诊分诊台 共病 医学诊断 疾病 人口 指南 癌症 医学 家族史 内科学 急诊医学 病理 环境卫生
作者
Pankush Kalgotra,Ramesh Sharda,Sravanthi Parasa
出处
期刊:Decision Support Systems [Elsevier BV]
卷期号:168: 113929-113929 被引量:3
标识
DOI:10.1016/j.dss.2023.113929
摘要

Colorectal cancer (CRC) is the third most common cancer in terms of the number of cases and deaths in men and women in the USA. According to the Centers for Disease Control and Prevention, the CRC screening compliance rate remains low in the United States. It is even more concerning that the number of cases and deaths due to CRC is increasing in the younger population, for which there is no guideline to get colonoscopy screening. In this paper, we develop a novel network-based model to identify patients under 50 years of age having a high risk of CRC, particularly those who do not have a family history. Our model can help predict which patients are at risk of developing colorectal cancer to aid the practicing primary care physician and gastroenterologist to triage patients into meaningful risk groups to provide accelerated diagnostic steps and care to these patients. The model uses our proposed variables created through comorbidity network matrices obtained from CRC and non-CRC patients as inputs. We used the electronic medical records of thousands of CRC and non-CRC patients to develop and validate the models. Our model for younger patients correctly predicted 73.2% of the patients with future diagnoses with an area under the ROC curve of 0.81. At the 50% sensitivity, the false positive rate was 11.5%. The performance of our model is the highest in the current state-of-the-art. Our proposed variables quantifying the interactions between multiple diseases can also be adapted in future predictions of other diseases in a patient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YAN发布了新的文献求助10
刚刚
今后应助兴奋的鼠标采纳,获得10
1秒前
1秒前
2秒前
杜du发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
眼睛大樱桃完成签到,获得积分10
4秒前
6秒前
memory发布了新的文献求助10
6秒前
大模型应助双子玖兰莒采纳,获得10
6秒前
orixero应助chenzy采纳,获得10
6秒前
yeah发布了新的文献求助10
6秒前
Orange应助嘻嘻哈哈小鱼采纳,获得10
7秒前
Cc发布了新的文献求助10
7秒前
8秒前
feizhuliu完成签到,获得积分10
8秒前
铜锈发布了新的文献求助10
9秒前
eternity136发布了新的文献求助10
9秒前
哈哈发布了新的文献求助10
9秒前
9秒前
10秒前
凉皮儿完成签到,获得积分20
11秒前
瓜子完成签到,获得积分10
12秒前
Hisoka发布了新的文献求助10
12秒前
隐形小兔子完成签到,获得积分10
13秒前
13秒前
尹恩惠发布了新的文献求助30
14秒前
科研通AI2S应助哈哈采纳,获得10
15秒前
16秒前
深情安青应助haoyuDeng采纳,获得10
18秒前
18秒前
852应助lee采纳,获得10
19秒前
19秒前
彭于晏应助沉默的宛筠采纳,获得10
19秒前
尹恩惠完成签到,获得积分10
20秒前
热心果汁发布了新的文献求助10
20秒前
21秒前
科研通AI2S应助www采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289331
求助须知:如何正确求助?哪些是违规求助? 4441004
关于积分的说明 13826177
捐赠科研通 4323262
什么是DOI,文献DOI怎么找? 2373137
邀请新用户注册赠送积分活动 1368528
关于科研通互助平台的介绍 1332411