亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Incorporating knowledge of disease-defining hub genes and regulatory network into a machine learning-based model for predicting treatment response in lupus nephritis after the first renal flare

Lasso(编程语言) 狼疮性肾炎 聚类分析 接收机工作特性 弹性网正则化 计算生物学 特征选择 疾病 计算机科学 机器学习 生物信息学 医学 生物 内科学 万维网
作者
Ding-Jie Lee,Pei-Ling Tsai,Chien‐Chou Chen,Yang-Hong Dai
出处
期刊:Journal of Translational Medicine [BioMed Central]
卷期号:21 (1) 被引量:1
标识
DOI:10.1186/s12967-023-03931-z
摘要

Identifying candidates responsive to treatment is important in lupus nephritis (LN) at the renal flare (RF) because an effective treatment can lower the risk of progression to end-stage kidney disease. However, machine learning (ML)-based models that address this issue are lacking.Transcriptomic profiles based on DNA microarray data were extracted from the GSE32591 and GSE112943 datasets. Comprehensive bioinformatics analyses were performed to identify disease-defining genes (DDGs). Peripheral blood samples (GSE81622, GSE99967, and GSE72326) were used to evaluate the effect of DDGs. Single-sample gene set enrichment analysis (ssGSEA) scores of the DDGs were calculated and correlated with specific immunology genes listed in the nCounter panel. GSE60681 and GSE69438 were used to examine the ability of the DDGs to discriminate LN from other renal diseases. K-means clustering was used to obtain the separate gene sets. The clustering results were extended to data derived using the nCounter technique. The least absolute shrinkage and selection operator (LASSO) algorithm was used to identify genes with high predictive value for treatment response after the first RF in each cluster. LASSO models with tenfold validation were built in GSE200306 and assessed by receiver operating characteristic (ROC) analysis with area under curve (AUC). The models were validated by using an independent dataset (GSE113342).Forty-five hub genes specific to LN were identified. Eight optimal disease-defining clusters (DDCs) were identified in this study. Th1 and Th2 cell differentiation pathway was significantly enriched in DDC-6. LCK in DDC-6, whose expression positively correlated with various subsets of T cell infiltrations, was found to be differentially expressed between responders and non-responders and was ranked high in regulatory network analysis. Based on DDC-6, the prediction model had the best performance (AUC: 0.75; 95% confidence interval: 0.44-1 in the testing set) and high precision (0.83), recall (0.71), and F1 score (0.77) in the validation dataset.Our study demonstrates that incorporating knowledge of biological phenotypes into the ML model is feasible for evaluating treatment response after the first RF in LN. This knowledge-based incorporation improves the model's transparency and performance. In addition, LCK may serve as a biomarker for T-cell infiltration and a therapeutic target in LN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
5秒前
5秒前
ceeray23发布了新的文献求助20
9秒前
太阳啊发布了新的文献求助10
9秒前
xiuxiu完成签到 ,获得积分10
10秒前
打打应助成就的行云采纳,获得10
10秒前
13秒前
esyncoms完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
大模型应助太阳啊采纳,获得10
20秒前
dada完成签到 ,获得积分10
27秒前
32秒前
合一海盗完成签到,获得积分10
34秒前
醉书生应助科研通管家采纳,获得10
35秒前
共享精神应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
醉书生应助科研通管家采纳,获得10
35秒前
mmmmk发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助10
37秒前
科研通AI5应助Lu_ckilly采纳,获得10
42秒前
49秒前
量子星尘发布了新的文献求助10
53秒前
Lu_ckilly发布了新的文献求助10
55秒前
lalala完成签到,获得积分10
56秒前
58秒前
邓力发布了新的文献求助10
1分钟前
小付完成签到,获得积分10
1分钟前
02发布了新的文献求助10
1分钟前
科研通AI5应助硕小牛采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
程程发布了新的文献求助10
1分钟前
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
李健的小迷弟应助李李采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
dax大雄完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666287
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762737
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185