DapNet-HLA: Adaptive dual-attention mechanism network based on deep learning to predict non-classical HLA binding sites

计算机科学 人工智能 人类白细胞抗原 分类器(UML) 模式识别(心理学) 过度拟合 接收机工作特性 人工神经网络 机器学习 生物 抗原 遗传学
作者
Yuanyuan Jing,Shengli Zhang,Houqiang Wang
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:666: 115075-115075 被引量:8
标识
DOI:10.1016/j.ab.2023.115075
摘要

Human leukocyte antigen (HLA) plays a vital role in immunomodulatory function. Studies have shown that immunotherapy based on non-classical HLA has essential applications in cancer, COVID-19, and allergic diseases. However, there are few deep learning methods to predict non-classical HLA alleles. In this work, an adaptive dual-attention network named DapNet-HLA is established based on existing datasets. Firstly, amino acid sequences are transformed into digital vectors by looking up the table. To overcome the feature sparsity problem caused by unique one-hot encoding, the fused word embedding method is used to map each amino acid to a low-dimensional word vector optimized with the training of the classifier. Then, we use the GCB (group convolution block), SENet attention (squeeze-and-excitation networks), BiLSTM (bidirectional long short-term memory network), and Bahdanau attention mechanism to construct the classifier. The use of SENet can make the weight of the effective feature map high, so that the model can be trained to achieve better results. Attention mechanism is an Encoder-Decoder model used to improve the effectiveness of RNN, LSTM or GRU (gated recurrent neural network). The ablation experiment shows that DapNet-HLA has the best adaptability for five datasets. On the five test datasets, the ACC index and MCC index of DapNet-HLA are 4.89% and 0.0933 higher than the comparison method, respectively. According to the ROC curve and PR curve verified by the 5-fold cross-validation, the AUC value of each fold has a slight fluctuation, which proves the robustness of the DapNet-HLA. The codes and datasets are accessible at https://github.com/JYY625/DapNet-HLA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
追寻复天完成签到 ,获得积分10
2秒前
ly发布了新的文献求助30
3秒前
wfwl发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
随安发布了新的文献求助10
4秒前
5秒前
5秒前
旷野发布了新的文献求助10
6秒前
JamesHao发布了新的文献求助10
7秒前
7秒前
吾月发布了新的文献求助10
7秒前
JamesPei应助ALUCK采纳,获得10
7秒前
情怀应助liuzhanyu采纳,获得10
8秒前
齐以言完成签到,获得积分10
9秒前
9秒前
核桃发布了新的文献求助10
9秒前
ding应助知己采纳,获得10
9秒前
Ava应助阿丑的小伙伴采纳,获得10
9秒前
小石头发布了新的文献求助10
9秒前
10秒前
1717发布了新的文献求助10
11秒前
柚子皮发布了新的文献求助20
11秒前
拖把粘十完成签到 ,获得积分10
12秒前
北柑完成签到,获得积分20
12秒前
研友_r8YgPn发布了新的文献求助10
13秒前
lzzd031416完成签到,获得积分10
13秒前
Q Eason发布了新的文献求助10
14秒前
布洛芬完成签到,获得积分20
15秒前
lzx发布了新的文献求助10
15秒前
15秒前
JamesHao完成签到,获得积分10
15秒前
15秒前
17秒前
成博应助可爱的凛采纳,获得10
17秒前
wangdao完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959482
求助须知:如何正确求助?哪些是违规求助? 3505709
关于积分的说明 11125517
捐赠科研通 3237592
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802868