DapNet-HLA: Adaptive dual-attention mechanism network based on deep learning to predict non-classical HLA binding sites

计算机科学 人工智能 人类白细胞抗原 分类器(UML) 模式识别(心理学) 过度拟合 接收机工作特性 人工神经网络 机器学习 生物 抗原 遗传学
作者
Yuanyuan Jing,Shengli Zhang,Houqiang Wang
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:666: 115075-115075 被引量:8
标识
DOI:10.1016/j.ab.2023.115075
摘要

Human leukocyte antigen (HLA) plays a vital role in immunomodulatory function. Studies have shown that immunotherapy based on non-classical HLA has essential applications in cancer, COVID-19, and allergic diseases. However, there are few deep learning methods to predict non-classical HLA alleles. In this work, an adaptive dual-attention network named DapNet-HLA is established based on existing datasets. Firstly, amino acid sequences are transformed into digital vectors by looking up the table. To overcome the feature sparsity problem caused by unique one-hot encoding, the fused word embedding method is used to map each amino acid to a low-dimensional word vector optimized with the training of the classifier. Then, we use the GCB (group convolution block), SENet attention (squeeze-and-excitation networks), BiLSTM (bidirectional long short-term memory network), and Bahdanau attention mechanism to construct the classifier. The use of SENet can make the weight of the effective feature map high, so that the model can be trained to achieve better results. Attention mechanism is an Encoder-Decoder model used to improve the effectiveness of RNN, LSTM or GRU (gated recurrent neural network). The ablation experiment shows that DapNet-HLA has the best adaptability for five datasets. On the five test datasets, the ACC index and MCC index of DapNet-HLA are 4.89% and 0.0933 higher than the comparison method, respectively. According to the ROC curve and PR curve verified by the 5-fold cross-validation, the AUC value of each fold has a slight fluctuation, which proves the robustness of the DapNet-HLA. The codes and datasets are accessible at https://github.com/JYY625/DapNet-HLA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瀼瀼完成签到,获得积分10
刚刚
1秒前
啊楠完成签到,获得积分10
1秒前
郭勇慧发布了新的文献求助10
1秒前
2秒前
豆子完成签到 ,获得积分10
2秒前
玉子烧完成签到,获得积分10
2秒前
完美世界应助不败姑娘采纳,获得10
2秒前
2秒前
2秒前
111111发布了新的文献求助10
3秒前
清脆雪巧完成签到,获得积分10
3秒前
3秒前
zhaopenghui发布了新的文献求助10
3秒前
惰性气体发布了新的文献求助10
4秒前
4秒前
cy完成签到 ,获得积分20
4秒前
4秒前
5秒前
黑大帅发布了新的文献求助10
5秒前
小Z发布了新的文献求助10
5秒前
蓝天发布了新的文献求助10
5秒前
orixero应助2240920060采纳,获得10
5秒前
燕天与完成签到,获得积分10
6秒前
Akim应助Snoopy采纳,获得10
6秒前
橘酥酥呀完成签到,获得积分20
6秒前
醋溜荧光大蒜完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
普鲁卡因发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助20
7秒前
倦梦还完成签到,获得积分10
7秒前
玻璃发布了新的文献求助10
7秒前
李健应助拾柒采纳,获得10
7秒前
lz发布了新的文献求助10
8秒前
normankasimodo完成签到,获得积分10
8秒前
wu完成签到,获得积分10
8秒前
郭勇慧完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034