DapNet-HLA: Adaptive dual-attention mechanism network based on deep learning to predict non-classical HLA binding sites

计算机科学 人工智能 人类白细胞抗原 分类器(UML) 模式识别(心理学) 过度拟合 接收机工作特性 人工神经网络 机器学习 生物 抗原 遗传学
作者
Yuanyuan Jing,Shengli Zhang,Houqiang Wang
出处
期刊:Analytical Biochemistry [Elsevier]
卷期号:666: 115075-115075 被引量:8
标识
DOI:10.1016/j.ab.2023.115075
摘要

Human leukocyte antigen (HLA) plays a vital role in immunomodulatory function. Studies have shown that immunotherapy based on non-classical HLA has essential applications in cancer, COVID-19, and allergic diseases. However, there are few deep learning methods to predict non-classical HLA alleles. In this work, an adaptive dual-attention network named DapNet-HLA is established based on existing datasets. Firstly, amino acid sequences are transformed into digital vectors by looking up the table. To overcome the feature sparsity problem caused by unique one-hot encoding, the fused word embedding method is used to map each amino acid to a low-dimensional word vector optimized with the training of the classifier. Then, we use the GCB (group convolution block), SENet attention (squeeze-and-excitation networks), BiLSTM (bidirectional long short-term memory network), and Bahdanau attention mechanism to construct the classifier. The use of SENet can make the weight of the effective feature map high, so that the model can be trained to achieve better results. Attention mechanism is an Encoder-Decoder model used to improve the effectiveness of RNN, LSTM or GRU (gated recurrent neural network). The ablation experiment shows that DapNet-HLA has the best adaptability for five datasets. On the five test datasets, the ACC index and MCC index of DapNet-HLA are 4.89% and 0.0933 higher than the comparison method, respectively. According to the ROC curve and PR curve verified by the 5-fold cross-validation, the AUC value of each fold has a slight fluctuation, which proves the robustness of the DapNet-HLA. The codes and datasets are accessible at https://github.com/JYY625/DapNet-HLA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助lex采纳,获得10
1秒前
董菲音发布了新的文献求助30
1秒前
HaloX发布了新的文献求助10
1秒前
CodeCraft应助眉间雪采纳,获得10
2秒前
拉哈80应助lzh采纳,获得10
2秒前
朵的发布了新的文献求助10
2秒前
刻苦的新竹完成签到,获得积分10
3秒前
张豪完成签到,获得积分10
3秒前
3秒前
跳跃小伙完成签到 ,获得积分10
3秒前
Philippe发布了新的文献求助10
3秒前
3秒前
Cc完成签到,获得积分10
3秒前
3秒前
述说发布了新的文献求助10
4秒前
4秒前
坚强成风完成签到,获得积分10
4秒前
小思发布了新的文献求助10
4秒前
4秒前
科研小兵发布了新的文献求助10
4秒前
4秒前
天地不语发布了新的文献求助10
4秒前
5秒前
5秒前
斯文败类应助默默采纳,获得10
5秒前
5秒前
Hello应助仙人掌采纳,获得10
5秒前
YChen发布了新的文献求助100
6秒前
樱桃完成签到,获得积分10
6秒前
充电宝应助阮楷瑞采纳,获得10
6秒前
可爱mini完成签到,获得积分20
6秒前
6秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
隐形的草莓完成签到,获得积分10
7秒前
4892完成签到 ,获得积分10
7秒前
lex完成签到,获得积分10
8秒前
田様应助超级冥王星采纳,获得10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214