Efficiently Leveraging Multi-level User Intent for Session-based Recommendation via Atten-Mixer Network

计算机科学 推荐系统 会话(web分析) 过程(计算) 分布式计算 人工智能 机器学习 万维网 操作系统
作者
Peiyan Zhang,Jiayan Guo,Chaozhuo Li,Yueqi Xie,Jae Boum Kim,Yan Zhang,Xing Xie,Haohan Wang,Sunghun Kim
标识
DOI:10.1145/3539597.3570445
摘要

Session-based recommendation (SBR) aims to predict the user's next action based on short and dynamic sessions. Recently, there has been an increasing interest in utilizing various elaborately designed graph neural networks (GNNs) to capture the pair-wise relationships among items, seemingly suggesting the design of more complicated models is the panacea for improving the empirical performance. However, these models achieve relatively marginal improvements with exponential growth in model complexity. In this paper, we dissect the classical GNN-based SBR models and empirically find that some sophisticated GNN propagations are redundant, given the readout module plays a significant role in GNN-based models. Based on this observation, we intuitively propose to remove the GNN propagation part, while the readout module will take on more responsibility in the model reasoning process. To this end, we propose the Multi-Level Attention Mixture Network (Atten-Mixer), which leverages both concept-view and instance-view readouts to achieve multi-level reasoning over item transitions. As simply enumerating all possible high-level concepts is infeasible for large real-world recommender systems, we further incorporate SBR-related inductive biases, i.e., local invariance and inherent priority to prune the search space. Experiments on three benchmarks demonstrate the effectiveness and efficiency of our proposal. We also have already launched the proposed techniques to a large-scale e-commercial online service since April 2021, with significant improvements of top-tier business metrics demonstrated in the online experiments on live traffic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
良辰应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
良辰应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
dll发布了新的文献求助10
1秒前
猪猪hero应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
suibianba应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
良辰应助科研通管家采纳,获得10
2秒前
良辰应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
良辰应助科研通管家采纳,获得10
2秒前
魔幻的盼芙完成签到 ,获得积分10
5秒前
从容安珊完成签到,获得积分10
5秒前
英姑应助望北采纳,获得30
5秒前
yjihn发布了新的文献求助10
6秒前
6秒前
8秒前
9秒前
10秒前
10秒前
科目三应助开心不愁采纳,获得10
11秒前
小马甲应助Suki采纳,获得10
11秒前
善良夜梅发布了新的文献求助30
12秒前
汉堡包应助苏柏亚采纳,获得10
12秒前
biglixiang发布了新的文献求助30
12秒前
华仔应助扶光采纳,获得10
12秒前
13秒前
幸福大白发布了新的文献求助10
13秒前
小刘爱实验完成签到,获得积分10
14秒前
Lucas应助YY1023采纳,获得10
14秒前
小鲨鱼发布了新的文献求助10
14秒前
快乐冷风发布了新的文献求助10
15秒前
lqllll发布了新的文献求助10
15秒前
aaaaa发布了新的文献求助30
15秒前
Brian发布了新的文献求助10
18秒前
斯文败类应助fbpuf采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674041
求助须知:如何正确求助?哪些是违规求助? 3229463
关于积分的说明 9785742
捐赠科研通 2939976
什么是DOI,文献DOI怎么找? 1611554
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736344