钙钛矿(结构)
光伏系统
材料科学
有机太阳能电池
空间环境
大气(单位)
航空航天工程
火箭(武器)
化学
物理
气象学
复合材料
天文
工程类
结晶学
聚合物
电气工程
作者
Lennart K. Reb,M. Böhmer,Benjamin Predeschly,Sebastian Grott,Christian L. Weindl,Goran I. Ivandekic,Renjun Guo,Lukas V. Spanier,Matthias Schwartzkopf,Andrei Chumakov,C. Dreißigacker,R. Gernhäuser,Stephan V. Roth,Andreas Meyer,Peter Müller‐Buschbaum
出处
期刊:Solar RRL
[Wiley]
日期:2023-02-23
卷期号:7 (9)
被引量:2
标识
DOI:10.1002/solr.202300043
摘要
Perovskite and organic solar cells are promising for space applications for enabling higher specific powers or alternative deployment systems. However, terrestrial tests can only mimic space conditions to a certain extent. Herein, a detailed analysis of irradiation‐dependent photovoltaic parameters of perovskite and organic solar cells exposed to space conditions during a suborbital flight is presented. In orbital altitudes, perovskite and organic solar cells reach power‐conversion efficiencies of more than 13% and 6%, respectively. Based on postflight grazing‐incidence small‐angle and wide‐angle X‐ray scattering, the active layer morphology and crystalline structure of the returned space solar cells are studied and compared to those of reference solar cells that stayed in an inert atmosphere. Minor changes in the active layer morphology are induced by the sole transport, without causing significant performance loss. For the space solar cells, morphological changes are attributed to the flight experiment that includes rocket launch, spaceflight, and reentry, as well as short‐terrestrial environment exposure before and after launch. In contrast, no significant changes to the crystalline phase are observed. The notable performance during flight and high active layer stability, especially of perovskite solar cells, are promising results for further steps toward an orbital demonstration.
科研通智能强力驱动
Strongly Powered by AbleSci AI