Electrostatic-induced green and precise growth of model catalysts

催化作用 电场 静电学 离子键合 化学物理 纳米技术 材料科学 面(心理学) 偶极子 多面体 Crystal(编程语言) 晶体生长 光催化 化学工程 化学 结晶学 物理化学 计算机科学 离子 有机化学 物理 数学 几何学 程序设计语言 五大性格特征 人格 心理学 工程类 社会心理学 量子力学
作者
Qiancheng Xia,Bin Liu,Chao Wang,Tao Shen,Shuang Li,Yongguang Bu,Yuchen Zhang,Zhenda Lu,Guandao Gao
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (9) 被引量:7
标识
DOI:10.1073/pnas.2217256120
摘要

Crystallographic control of crystals as catalysts with precise geometrical and chemical features is significantly important to develop sustainable chemistry, yet highly challenging. Encouraged by first principles calculations, precise structure control of ionic crystals could be realized by introducing an interfacial electrostatic field. Herein, we report an efficient in situ dipole-sourced electrostatic field modulation strategy using polarized ferroelectret, for crystal facet engineering toward challenging catalysis reactions, which avoids undesired faradic reactions or insufficient field strength by conventional external electric field. Resultantly, a distinct structure evolution from tetrahedron to polyhedron with different dominated facets of Ag3PO4 model catalyst was obtained by tuning the polarization level, and similar oriented growth was also realized by ZnO system. Theoretical calculations and simulation reveal that the generated electrostatic field can effectively guide the migration and anchoring of Ag+ precursors and free Ag3PO4 nuclei, achieving oriented crystal growth by thermodynamic and kinetic balance. The faceted Ag3PO4 catalyst exhibits high performance in photocatalytic water oxidation and nitrogen fixation for valuable chemicals production, validating the effectiveness and potential of this crystal regulation strategy. Such an electrically tunable growth concept by electrostatic field provides new synthetic insights and great opportunity to effectively tailor the crystal structures for facet-dependent catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡图图完成签到,获得积分10
刚刚
刚刚
吕方完成签到,获得积分10
刚刚
2秒前
L-g-b完成签到,获得积分10
2秒前
杨多多完成签到,获得积分10
2秒前
LLLLLL完成签到,获得积分10
2秒前
www完成签到,获得积分10
3秒前
lenon发布了新的文献求助10
3秒前
1111发布了新的文献求助10
4秒前
5秒前
机智傀斗完成签到,获得积分10
5秒前
善良天抒完成签到 ,获得积分20
5秒前
宇宙中心发布了新的文献求助10
5秒前
小蘑菇应助吕方采纳,获得10
5秒前
夙夙发布了新的文献求助10
6秒前
TP完成签到,获得积分10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得20
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得30
7秒前
916应助科研通管家采纳,获得10
7秒前
Bio应助felix采纳,获得50
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
Bio应助科研通管家采纳,获得10
7秒前
GEeZiii发布了新的文献求助10
7秒前
916应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
ED应助科研通管家采纳,获得10
7秒前
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
lucyliu完成签到 ,获得积分10
7秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得20
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650