Improving anti-jamming decision-making strategies for cognitive radar via multi-agent deep reinforcement learning

强化学习 马尔可夫决策过程 计算机科学 干扰 人工智能 雷达 部分可观测马尔可夫决策过程 电子战 机器学习 过程(计算) 决策支持系统 运筹学 马尔可夫过程 马尔可夫链 马尔可夫模型 工程类 电信 物理 热力学 统计 数学 操作系统
作者
Wen Jiang,Yihui Ren,Yanping Wang
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:135: 103952-103952 被引量:3
标识
DOI:10.1016/j.dsp.2023.103952
摘要

Most of the existing anti-jamming decision-making methods overly rely on the subjective experience of radar operators. However, due to the rapid development of cognitive radar and modern electronic warfare, conventional anti-jamming decision-making methods can no longer adapt to the complex and changing electromagnetic environment. The advent of deep reinforcement learning (DRL) provides a new attractive solution for this issue. In this paper, an adversarial anti-jamming decision-making network for cognitive radar via multi-agent deep reinforcement learning (MDRL) is proposed, which has good self-learning ability and can meet the requirements of intelligent, dynamic and real-time in modern electronic warfare. Since competitive decision-makers are considered and these two confrontational sides are not able to obtain the completely accurate information of each other, the environment model is specifically constructed as a partially observable Markov decision process (POMDP). Then, a decision-making network is designed based on deterministic deep deterministic policy gradient (DDPG) algorithm to explore the competition between cognitive radar and smart jammer. In order to overcome the environment non-stationarity, the decision-making network is trained and tested in a special MDRL framework. The experimental results demonstrate that the proposed method is effective in anti-jamming decision-making system of cognitive radar. Furthermore, the two confrontational sides show high decision-making ability and perform well in the adversarial scenario by comparing with other training policies, which demonstrate that confrontational training with powerful opponents can improve the intelligence level of all agents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱思卉完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
大方的芸发布了新的文献求助10
1秒前
MonicaR完成签到,获得积分10
2秒前
2秒前
粗心的墨镜完成签到,获得积分10
3秒前
3秒前
Maestro_S发布了新的文献求助10
4秒前
wwwq发布了新的文献求助10
4秒前
liuying发布了新的文献求助10
4秒前
XinChenLee发布了新的文献求助10
4秒前
4秒前
ZZ完成签到 ,获得积分10
5秒前
hokin33发布了新的文献求助30
5秒前
jyk完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
一期一会发布了新的文献求助30
8秒前
英俊皮卡丘完成签到,获得积分10
8秒前
NexusExplorer应助芋头采纳,获得10
9秒前
任某人完成签到,获得积分10
10秒前
小叶同学完成签到,获得积分10
10秒前
勇敢的心发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
Arlene完成签到 ,获得积分10
12秒前
Aryan关注了科研通微信公众号
12秒前
13秒前
13秒前
13秒前
hokin33完成签到,获得积分10
14秒前
小马甲应助菜菜mm采纳,获得10
14秒前
jyk发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300