Improving anti-jamming decision-making strategies for cognitive radar via multi-agent deep reinforcement learning

强化学习 马尔可夫决策过程 计算机科学 干扰 人工智能 雷达 部分可观测马尔可夫决策过程 电子战 机器学习 过程(计算) 决策支持系统 运筹学 马尔可夫过程 马尔可夫链 马尔可夫模型 工程类 电信 物理 热力学 统计 数学 操作系统
作者
Wen Jiang,Yihui Ren,Yanping Wang
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:135: 103952-103952 被引量:3
标识
DOI:10.1016/j.dsp.2023.103952
摘要

Most of the existing anti-jamming decision-making methods overly rely on the subjective experience of radar operators. However, due to the rapid development of cognitive radar and modern electronic warfare, conventional anti-jamming decision-making methods can no longer adapt to the complex and changing electromagnetic environment. The advent of deep reinforcement learning (DRL) provides a new attractive solution for this issue. In this paper, an adversarial anti-jamming decision-making network for cognitive radar via multi-agent deep reinforcement learning (MDRL) is proposed, which has good self-learning ability and can meet the requirements of intelligent, dynamic and real-time in modern electronic warfare. Since competitive decision-makers are considered and these two confrontational sides are not able to obtain the completely accurate information of each other, the environment model is specifically constructed as a partially observable Markov decision process (POMDP). Then, a decision-making network is designed based on deterministic deep deterministic policy gradient (DDPG) algorithm to explore the competition between cognitive radar and smart jammer. In order to overcome the environment non-stationarity, the decision-making network is trained and tested in a special MDRL framework. The experimental results demonstrate that the proposed method is effective in anti-jamming decision-making system of cognitive radar. Furthermore, the two confrontational sides show high decision-making ability and perform well in the adversarial scenario by comparing with other training policies, which demonstrate that confrontational training with powerful opponents can improve the intelligence level of all agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太兰发布了新的文献求助10
刚刚
紫色水晶之恋完成签到,获得积分10
刚刚
烂漫的访天完成签到,获得积分10
刚刚
刚刚
潇z发布了新的文献求助10
1秒前
Jia完成签到,获得积分20
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
koko发布了新的文献求助10
2秒前
桐桐应助儒雅致远采纳,获得10
3秒前
3秒前
称心誉发布了新的文献求助10
4秒前
爱吃火锅发布了新的文献求助10
4秒前
YoungLee完成签到,获得积分10
4秒前
4秒前
4秒前
LHP完成签到,获得积分10
4秒前
5秒前
彭于晏应助动听的寄松采纳,获得10
5秒前
2354发布了新的文献求助10
5秒前
5秒前
小企鹅完成签到,获得积分10
5秒前
加减乘除发布了新的文献求助10
6秒前
陈末应助失眠的斑马采纳,获得10
6秒前
zhang完成签到,获得积分10
6秒前
yxl发布了新的文献求助10
8秒前
星辰大海应助yby采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
nnyyaaa发布了新的文献求助10
8秒前
苏苏完成签到,获得积分10
8秒前
liudongling完成签到,获得积分10
9秒前
9秒前
aaaa完成签到,获得积分10
9秒前
1397发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433734
求助须知:如何正确求助?哪些是违规求助? 4546134
关于积分的说明 14201102
捐赠科研通 4466059
什么是DOI,文献DOI怎么找? 2447781
邀请新用户注册赠送积分活动 1438873
关于科研通互助平台的介绍 1415835