Improving anti-jamming decision-making strategies for cognitive radar via multi-agent deep reinforcement learning

强化学习 马尔可夫决策过程 计算机科学 干扰 人工智能 雷达 部分可观测马尔可夫决策过程 电子战 机器学习 过程(计算) 决策支持系统 运筹学 马尔可夫过程 马尔可夫链 马尔可夫模型 工程类 电信 物理 热力学 统计 数学 操作系统
作者
Wen Jiang,Yihui Ren,Yanping Wang
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:135: 103952-103952 被引量:3
标识
DOI:10.1016/j.dsp.2023.103952
摘要

Most of the existing anti-jamming decision-making methods overly rely on the subjective experience of radar operators. However, due to the rapid development of cognitive radar and modern electronic warfare, conventional anti-jamming decision-making methods can no longer adapt to the complex and changing electromagnetic environment. The advent of deep reinforcement learning (DRL) provides a new attractive solution for this issue. In this paper, an adversarial anti-jamming decision-making network for cognitive radar via multi-agent deep reinforcement learning (MDRL) is proposed, which has good self-learning ability and can meet the requirements of intelligent, dynamic and real-time in modern electronic warfare. Since competitive decision-makers are considered and these two confrontational sides are not able to obtain the completely accurate information of each other, the environment model is specifically constructed as a partially observable Markov decision process (POMDP). Then, a decision-making network is designed based on deterministic deep deterministic policy gradient (DDPG) algorithm to explore the competition between cognitive radar and smart jammer. In order to overcome the environment non-stationarity, the decision-making network is trained and tested in a special MDRL framework. The experimental results demonstrate that the proposed method is effective in anti-jamming decision-making system of cognitive radar. Furthermore, the two confrontational sides show high decision-making ability and perform well in the adversarial scenario by comparing with other training policies, which demonstrate that confrontational training with powerful opponents can improve the intelligence level of all agents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泥泥应助HH采纳,获得30
1秒前
我是老大应助猪肉水饺采纳,获得10
3秒前
Otorhino发布了新的文献求助10
4秒前
4秒前
嘿嘿嘿完成签到,获得积分10
5秒前
jaytotti完成签到,获得积分10
5秒前
qqshown发布了新的文献求助10
6秒前
李禹民给adheret的求助进行了留言
6秒前
领导范儿应助yyy采纳,获得10
8秒前
秦宇麒完成签到,获得积分20
9秒前
浮尘完成签到 ,获得积分0
9秒前
DengLingjie完成签到,获得积分20
10秒前
wang发布了新的文献求助10
11秒前
哎哟很烦完成签到,获得积分10
11秒前
情怀应助秦宇麒采纳,获得10
13秒前
weddcf发布了新的文献求助20
14秒前
小二郎应助seem233采纳,获得10
14秒前
毅诚菌完成签到,获得积分10
16秒前
迷路羽毛发布了新的文献求助10
16秒前
17秒前
江浔卿完成签到 ,获得积分10
19秒前
yyy完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
yyy发布了新的文献求助10
22秒前
22秒前
大胆胡萝卜完成签到,获得积分10
23秒前
Lucas应助十七采纳,获得10
23秒前
24秒前
drgaoying发布了新的文献求助10
24秒前
绿泡芙完成签到 ,获得积分10
24秒前
24秒前
25秒前
宁静致远完成签到,获得积分10
26秒前
猪肉水饺发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
唐焱杰完成签到,获得积分10
27秒前
万能图书馆应助俭朴青烟采纳,获得10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010343
求助须知:如何正确求助?哪些是违规求助? 3550209
关于积分的说明 11305256
捐赠科研通 3284663
什么是DOI,文献DOI怎么找? 1810786
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451