检出限
电化学气体传感器
化学
电化学
选择性
分子印迹聚合物
电极
线性范围
单体
组合化学
色谱法
聚合物
有机化学
催化作用
物理化学
作者
Chao Jin,Meng Li,Shimeng Duan,Qianyao Zhang,Genlin Zhang,Qingju Liu,Ruilin Zhang,Huiping Bai
标识
DOI:10.1016/j.bios.2023.115134
摘要
Ketamine is an organic drug with weak electrochemical activity, which makes it difficult to directly detect by electrochemical methods. Herein, an electrochemical sensor, with excellent detection sensitivity, is proposed for direct detection of ketamine based on a weakly conductive poly-L-cysteine molecularly imprinted membrane. Poly-L-cysteine molecularly imprinted membrane sensor (poly-L-Cys-KT-MIM/GCE) is obtained using L-cysteine as a functional monomer and ketamine as a template molecule based on electropolymerization. The green and highly active cysteine is selected as a functional monomer during electropolymerization, which cannot only achieve specific recognition but also improve detection sensitivity. Furthermore, the oxidation mechanism and fingerprint of ketamine on the electrode surface are established by analyzing the corresponding oxidation products using high/resolution mass spectrometry, which will help to promote the application of electrochemistry in the rapid detection of drugs. Under optimal conditions, the as-designed sensor demonstrated a linear response to ketamine within the range of 5.0 × 10−7 to 2.0 × 10−5 mol L−1 and a detection limit of 1.6 × 10−7 mol L−1. The proposed method exhibited excellent performance from the viewpoints of selectivity, sensitivity and stability. Notably, the sensor rendered excellent reliability and could be used for the detection of target analytes in hair and urine samples with high recovery rates.
科研通智能强力驱动
Strongly Powered by AbleSci AI