Accelerated Aging in LMNA Mutations Detected by Artificial Intelligence ECG–Derived Age

LMNA公司 医学 内科学 老年学 拉明 精神科 核心
作者
Shahar Shelly,Francisco Lopez‐Jimenez,Audry Chacin-Suarez,Michal Cohen‐Shelly,José R. Medina‐Inojosa,Suraj Kapa,Zachi I. Attia,C. Anwar A. Chahal,Virend K. Somers,Paul A. Friedman,Margherita Milone
出处
期刊:Mayo Clinic Proceedings [Elsevier]
卷期号:98 (4): 522-532 被引量:7
标识
DOI:10.1016/j.mayocp.2022.11.020
摘要

Objective To demonstrate early aging in patients with lamin A/C (LMNA) gene mutations after hypothesizing that they have a biological age older than chronological age, as such a finding impacts care. Patient and Methods We applied a previously trained convolutional neural network model to predict biological age by electrocardiogram (ECG) [Artificial Intelligence (AI)-ECG age] to LMNA patients evaluated by multiple ECGs from January 1, 2003, to December 31, 2019. The age gap was the difference between chronological age and AI-ECG age. Findings were compared with age-/sex-matched controls. Results Thirty-one LMNA patients who had a total of 271 ECGs were studied. The median age at symptom onset was 22 years (range, <1-53 years; n=23 patients); eight patients were asymptomatic family members carrying the LMNA mutation. Cardiac involvement was detected by ECG and echocardiogram in 16 patients and consisted of ventricular arrhythmias (13), atrial fibrillation (12), and cardiomyopathy (6). Four patients required cardiac transplantation. Fourteen patients had neurological manifestations, mainly muscular dystrophy. LMNA mutation carriers, including asymptomatic carriers, were 16 years older by AI-ECG than non-LMNA carriers, suggesting accelerated biological age. Most LMNA patients had an age gap of more than 10 years, compared with controls (P<.001). Consecutive AI-ECG analysis showed accelerated aging in the LMNA group compared with controls (P<.0001). There were no significant differences in age-gap among LMNA patients based on phenotype. Conclusion AI-ECG predicted that LMNA patients have a biological age older than chronological age and accelerated aging even in the absence of cardiac abnormalities by traditional methods. Such a finding could translate into early medical intervention and serve as a disease biomarker.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tian发布了新的文献求助10
刚刚
科研通AI40应助超帅的念寒采纳,获得10
刚刚
CipherSage应助阳正采纳,获得10
1秒前
2秒前
HHH完成签到,获得积分10
2秒前
科研通AI2S应助个性的半青采纳,获得10
2秒前
2秒前
WWXWWX发布了新的文献求助10
3秒前
4秒前
chunyeliangchuan完成签到,获得积分10
4秒前
吉鞅完成签到 ,获得积分10
4秒前
4秒前
4秒前
Masche完成签到,获得积分10
4秒前
山河与海完成签到,获得积分10
5秒前
嗯哼应助科研通管家采纳,获得30
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
爆米花应助坦率的含海采纳,获得10
5秒前
wanci应助kkk采纳,获得10
5秒前
神勇的晟睿完成签到,获得积分10
6秒前
haifang发布了新的文献求助10
6秒前
认真的画板完成签到,获得积分10
6秒前
nexus完成签到,获得积分10
6秒前
笨笨小刺猬完成签到,获得积分10
6秒前
丘比特应助WWXWWX采纳,获得10
6秒前
cccsx完成签到,获得积分20
7秒前
7秒前
7秒前
小石发布了新的文献求助10
7秒前
haoyooo完成签到,获得积分10
7秒前
Ava应助小山采纳,获得10
8秒前
完美世界应助王军方采纳,获得10
8秒前
哈哈哈完成签到 ,获得积分10
8秒前
David完成签到 ,获得积分10
8秒前
SY发布了新的文献求助10
8秒前
稻草人完成签到,获得积分10
9秒前
曲无极完成签到 ,获得积分10
10秒前
kirito完成签到,获得积分10
10秒前
WWXWWX完成签到,获得积分10
11秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471949
求助须知:如何正确求助?哪些是违规求助? 3064889
关于积分的说明 9091175
捐赠科研通 2755648
什么是DOI,文献DOI怎么找? 1512107
邀请新用户注册赠送积分活动 698655
科研通“疑难数据库(出版商)”最低求助积分说明 698537