Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions

汽车工程 能量回收 能量(信号处理) 工程类 环境科学 计算机科学 物理 量子力学
作者
Xiaochuan Zhou,Gang Wu,Chunyan Wang,Ruijun Zhang,Shuaipeng Shi,Wanzhong Zhao
出处
期刊:Energy [Elsevier]
卷期号:301: 131699-131699 被引量:3
标识
DOI:10.1016/j.energy.2024.131699
摘要

Regenerative braking can effectively recover vehicle kinetic energy, but its energy conversion efficiency is low under low-speed conditions, and there is also the problem of premature exit from energy recovery due to insufficient reverse electromotive force. The cooperation of gearbox gears can increase the speed range for the motor to recover energy, but unreasonable shifting will cause fluctuations in braking force and affect the consistency of the braking feel. Therefore, this paper aims to collaboratively optimize energy recovery and braking force fluctuations during gear shifting. Firstly, based on the model of braking system and transmission, the influence of shift strategy on braking impact and energy recovery is studied. In view of the challenge of determining a shift strategy with uncertain target braking speeds, a speed prediction model reconstructed by the support vector regression (SVR) model and the hybrid nonlinear autoregressive neural network (NAR) is proposed. On the basis of NAR-SVR speed prediction, the coupling effect of braking impact force and energy recovery efficiency is considered, and the collaborative optimization of regenerative braking torque and shift time is solved through a multi-objective cuckoo search algorithm. The hardware-in-the-loop test results verified that under high-speed conditions, the braking energy recovery rate of the proposed strategy was increased by 47.06%, and the peak braking impact was reduced by 61.4%. This research can provide a reference for the brake downshift optimization strategy and regenerative braking research of vehicles with non-decoupled electro-hydraulic composite braking systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
a1oft完成签到,获得积分10
1秒前
细腻沅发布了新的文献求助10
1秒前
李爱国应助温柔的十三采纳,获得10
1秒前
1秒前
橘子海完成签到 ,获得积分10
1秒前
整齐尔蝶完成签到,获得积分10
3秒前
3秒前
笛子完成签到,获得积分10
3秒前
通~发布了新的文献求助10
3秒前
3秒前
3秒前
梁小鑫完成签到,获得积分10
3秒前
东郭诗双完成签到,获得积分20
4秒前
小老虎的妈妈完成签到 ,获得积分10
4秒前
彭于彦祖发布了新的文献求助20
4秒前
4秒前
4秒前
个性南莲完成签到,获得积分10
5秒前
ZZ完成签到,获得积分10
5秒前
5秒前
yuki完成签到 ,获得积分10
5秒前
常常完成签到,获得积分10
5秒前
0514gr完成签到,获得积分10
5秒前
科目三应助WS采纳,获得10
6秒前
Aqua完成签到,获得积分10
6秒前
稚气满满完成签到 ,获得积分10
7秒前
周晴完成签到 ,获得积分10
8秒前
China发布了新的文献求助10
8秒前
kyt完成签到 ,获得积分10
8秒前
MADKAI发布了新的文献求助20
9秒前
hnn发布了新的文献求助10
9秒前
9秒前
oasissmz完成签到,获得积分10
10秒前
jiaojaioo完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
消风散几两重完成签到,获得积分10
11秒前
丘比特应助通~采纳,获得10
11秒前
隐形曼青应助千里采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740