Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions

汽车工程 能量回收 能量(信号处理) 工程类 环境科学 计算机科学 物理 量子力学
作者
Xiaochuan Zhou,Gang Wu,Chunyan Wang,Ruijun Zhang,Shuaipeng Shi,Wanzhong Zhao
出处
期刊:Energy [Elsevier]
卷期号:301: 131699-131699 被引量:3
标识
DOI:10.1016/j.energy.2024.131699
摘要

Regenerative braking can effectively recover vehicle kinetic energy, but its energy conversion efficiency is low under low-speed conditions, and there is also the problem of premature exit from energy recovery due to insufficient reverse electromotive force. The cooperation of gearbox gears can increase the speed range for the motor to recover energy, but unreasonable shifting will cause fluctuations in braking force and affect the consistency of the braking feel. Therefore, this paper aims to collaboratively optimize energy recovery and braking force fluctuations during gear shifting. Firstly, based on the model of braking system and transmission, the influence of shift strategy on braking impact and energy recovery is studied. In view of the challenge of determining a shift strategy with uncertain target braking speeds, a speed prediction model reconstructed by the support vector regression (SVR) model and the hybrid nonlinear autoregressive neural network (NAR) is proposed. On the basis of NAR-SVR speed prediction, the coupling effect of braking impact force and energy recovery efficiency is considered, and the collaborative optimization of regenerative braking torque and shift time is solved through a multi-objective cuckoo search algorithm. The hardware-in-the-loop test results verified that under high-speed conditions, the braking energy recovery rate of the proposed strategy was increased by 47.06%, and the peak braking impact was reduced by 61.4%. This research can provide a reference for the brake downshift optimization strategy and regenerative braking research of vehicles with non-decoupled electro-hydraulic composite braking systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
富贵发布了新的文献求助10
2秒前
长情的猕猴桃完成签到,获得积分10
3秒前
3秒前
情怀应助半烟采纳,获得10
3秒前
薰硝壤应助苏苏采纳,获得10
3秒前
xianyu完成签到,获得积分10
3秒前
徐智秀完成签到,获得积分20
5秒前
9秒前
东西南北完成签到,获得积分20
9秒前
wuyang发布了新的文献求助10
10秒前
一二完成签到,获得积分10
11秒前
不配.应助黄阿鹏采纳,获得10
12秒前
13秒前
iNk应助一念之间采纳,获得10
13秒前
wang发布了新的文献求助10
15秒前
orixero应助富贵采纳,获得10
15秒前
15秒前
Orange应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
16秒前
奶油泡fu完成签到 ,获得积分10
17秒前
18秒前
风荏完成签到,获得积分10
19秒前
小龙女完成签到 ,获得积分10
20秒前
风荏发布了新的文献求助10
21秒前
21秒前
24秒前
科研通AI2S应助snsut采纳,获得10
24秒前
26秒前
上官若男应助wang采纳,获得10
27秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141291
求助须知:如何正确求助?哪些是违规求助? 2792288
关于积分的说明 7802124
捐赠科研通 2448479
什么是DOI,文献DOI怎么找? 1302606
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237