Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions

汽车工程 能量回收 能量(信号处理) 工程类 环境科学 计算机科学 物理 量子力学
作者
Xiaochuan Zhou,Gang Wu,Chunyan Wang,Ruijun Zhang,Shuaipeng Shi,Wanzhong Zhao
出处
期刊:Energy [Elsevier BV]
卷期号:301: 131699-131699 被引量:4
标识
DOI:10.1016/j.energy.2024.131699
摘要

Regenerative braking can effectively recover vehicle kinetic energy, but its energy conversion efficiency is low under low-speed conditions, and there is also the problem of premature exit from energy recovery due to insufficient reverse electromotive force. The cooperation of gearbox gears can increase the speed range for the motor to recover energy, but unreasonable shifting will cause fluctuations in braking force and affect the consistency of the braking feel. Therefore, this paper aims to collaboratively optimize energy recovery and braking force fluctuations during gear shifting. Firstly, based on the model of braking system and transmission, the influence of shift strategy on braking impact and energy recovery is studied. In view of the challenge of determining a shift strategy with uncertain target braking speeds, a speed prediction model reconstructed by the support vector regression (SVR) model and the hybrid nonlinear autoregressive neural network (NAR) is proposed. On the basis of NAR-SVR speed prediction, the coupling effect of braking impact force and energy recovery efficiency is considered, and the collaborative optimization of regenerative braking torque and shift time is solved through a multi-objective cuckoo search algorithm. The hardware-in-the-loop test results verified that under high-speed conditions, the braking energy recovery rate of the proposed strategy was increased by 47.06%, and the peak braking impact was reduced by 61.4%. This research can provide a reference for the brake downshift optimization strategy and regenerative braking research of vehicles with non-decoupled electro-hydraulic composite braking systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
switch616完成签到,获得积分10
1秒前
Owen应助乌云乌云快走开采纳,获得10
2秒前
2秒前
多情怜蕾完成签到,获得积分10
2秒前
强健的中蓝完成签到,获得积分10
2秒前
albertxin完成签到,获得积分10
3秒前
3秒前
XCHI发布了新的文献求助10
4秒前
4秒前
Akim应助switch616采纳,获得10
4秒前
小二郎应助健壮听露采纳,获得10
5秒前
hhh发布了新的文献求助10
5秒前
sunrise发布了新的文献求助10
7秒前
8秒前
zc发布了新的文献求助10
8秒前
8秒前
Wang发布了新的文献求助10
8秒前
SYLH应助一根藤采纳,获得10
8秒前
传奇3应助一根藤采纳,获得10
8秒前
脑洞疼应助快乐科研狗采纳,获得10
9秒前
kkk发布了新的文献求助10
9秒前
10秒前
haha发布了新的文献求助10
12秒前
12秒前
13秒前
岳阳张震岳完成签到,获得积分10
14秒前
Owen应助ZLY采纳,获得10
15秒前
Ava应助清爽的雨竹采纳,获得10
15秒前
zc完成签到,获得积分10
18秒前
18秒前
IvanMcRae应助Hao采纳,获得10
18秒前
19秒前
19秒前
19秒前
19秒前
彭于晏应助蓝桉采纳,获得10
19秒前
雅丽发布了新的文献求助10
20秒前
20秒前
xinyuY发布了新的文献求助20
22秒前
PMY发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956244
求助须知:如何正确求助?哪些是违规求助? 3502445
关于积分的说明 11107634
捐赠科研通 3233093
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802086