Detection and Location of Litchi Fruit based on Object Detector and Depth Image

探测器 计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 图像(数学) 计算机图形学(图像) 模式识别(心理学) 电信
作者
Mao Liang,Zhishang Liang,Yinqiao Peng,Ji Wang,Linlin Wang
标识
DOI:10.1109/aeeca59734.2023.00163
摘要

Computer vision is the core of harvesting robots, and computer vision-based litchi fruit detection is an important direction for research on automated harvesting. However, the current detection methods of litchi fruit cannot meet the detection requirements in the complex orchard environment and cannot simultaneously detect a single litchi fruit and calculate the spatial location of the fruit. In this paper, a detection and location method based on object detector and depth images was proposed in this paper for litchi fruit in an orchard environment. After comparing the performance of multiple object detectors, YOLOv5 was chosen as the base model for litchi detection. An attention function and an improved loss function are added to YOLOv5. Meanwhile, to transmit more shallow features to deep layers, the transmission path of the neck was adjusted. The experimental results show that the mAP and F1 scores of the improved YOLOv5 are 0.9534 and 0.9428, which are higher than the corresponding performance values of YOLOv5, and the improved YOLOv5 can overcome the influence of various factors on the detection performance in practical detection scenarios. The method was tested in the orchard environment Intel RealSense D435 was used to collect RGB images and depth images of litchi during the test. The improved YOLOv5 detected litchi fruits in RGB images, the values of their corresponding positions in depth images were read. The experimental results show that the proposed method has high accuracy and strong robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿巴发布了新的文献求助10
2秒前
2秒前
华仔应助小茹采纳,获得10
3秒前
4秒前
6秒前
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
盒子应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
prosperp应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
缥缈浩然发布了新的文献求助10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
盒子应助科研通管家采纳,获得10
10秒前
10秒前
今后应助科研通管家采纳,获得10
10秒前
贤惠的松应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
11秒前
feiCheung完成签到 ,获得积分10
11秒前
12秒前
yufeng发布了新的文献求助10
12秒前
Xy发布了新的文献求助10
12秒前
14秒前
wangjinhe完成签到,获得积分10
16秒前
皮卡啾完成签到,获得积分10
16秒前
认真龙猫发布了新的文献求助10
16秒前
我的djwhjja完成签到,获得积分20
18秒前
19秒前
lig2给lig2的求助进行了留言
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293187
求助须知:如何正确求助?哪些是违规求助? 2929391
关于积分的说明 8441372
捐赠科研通 2601499
什么是DOI,文献DOI怎么找? 1419936
科研通“疑难数据库(出版商)”最低求助积分说明 660452
邀请新用户注册赠送积分活动 643053