Detection and Location of Litchi Fruit based on Object Detector and Depth Image

探测器 计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 图像(数学) 计算机图形学(图像) 模式识别(心理学) 电信
作者
Mao Liang,Zhishang Liang,Yinqiao Peng,Ji Wang,Linlin Wang
标识
DOI:10.1109/aeeca59734.2023.00163
摘要

Computer vision is the core of harvesting robots, and computer vision-based litchi fruit detection is an important direction for research on automated harvesting. However, the current detection methods of litchi fruit cannot meet the detection requirements in the complex orchard environment and cannot simultaneously detect a single litchi fruit and calculate the spatial location of the fruit. In this paper, a detection and location method based on object detector and depth images was proposed in this paper for litchi fruit in an orchard environment. After comparing the performance of multiple object detectors, YOLOv5 was chosen as the base model for litchi detection. An attention function and an improved loss function are added to YOLOv5. Meanwhile, to transmit more shallow features to deep layers, the transmission path of the neck was adjusted. The experimental results show that the mAP and F1 scores of the improved YOLOv5 are 0.9534 and 0.9428, which are higher than the corresponding performance values of YOLOv5, and the improved YOLOv5 can overcome the influence of various factors on the detection performance in practical detection scenarios. The method was tested in the orchard environment Intel RealSense D435 was used to collect RGB images and depth images of litchi during the test. The improved YOLOv5 detected litchi fruits in RGB images, the values of their corresponding positions in depth images were read. The experimental results show that the proposed method has high accuracy and strong robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助jy采纳,获得10
1秒前
安详香岚完成签到,获得积分10
1秒前
charliechen完成签到 ,获得积分10
2秒前
2秒前
轩辕唯雪完成签到,获得积分10
2秒前
qq完成签到,获得积分10
2秒前
3秒前
星辰大海应助feizhuliu采纳,获得10
4秒前
dew发布了新的文献求助10
5秒前
5秒前
夏之完成签到,获得积分10
6秒前
6秒前
利物浦996完成签到,获得积分10
6秒前
xiaogu完成签到,获得积分10
7秒前
小汇报完成签到,获得积分20
7秒前
西出阳关完成签到,获得积分10
7秒前
8秒前
Chemking完成签到,获得积分10
8秒前
HPP123发布了新的文献求助10
8秒前
小马甲应助啊印采纳,获得10
8秒前
chenchen完成签到 ,获得积分10
8秒前
9秒前
大唐元发布了新的文献求助20
9秒前
乐乐应助huayi采纳,获得10
9秒前
lishanner完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
12秒前
流水完成签到,获得积分10
12秒前
常泽洋122完成签到,获得积分10
13秒前
利物浦2024完成签到,获得积分10
13秒前
13秒前
14秒前
ZiXuanCui发布了新的文献求助30
15秒前
aeyounrz发布了新的文献求助10
15秒前
天真书文完成签到,获得积分20
15秒前
华仔应助dew采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
杨柳依依发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969513
求助须知:如何正确求助?哪些是违规求助? 3514327
关于积分的说明 11173617
捐赠科研通 3249672
什么是DOI,文献DOI怎么找? 1794973
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836