Detection and Location of Litchi Fruit based on Object Detector and Depth Image

探测器 计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 图像(数学) 计算机图形学(图像) 模式识别(心理学) 电信
作者
Mao Liang,Zhishang Liang,Yinqiao Peng,Ji Wang,Linlin Wang
标识
DOI:10.1109/aeeca59734.2023.00163
摘要

Computer vision is the core of harvesting robots, and computer vision-based litchi fruit detection is an important direction for research on automated harvesting. However, the current detection methods of litchi fruit cannot meet the detection requirements in the complex orchard environment and cannot simultaneously detect a single litchi fruit and calculate the spatial location of the fruit. In this paper, a detection and location method based on object detector and depth images was proposed in this paper for litchi fruit in an orchard environment. After comparing the performance of multiple object detectors, YOLOv5 was chosen as the base model for litchi detection. An attention function and an improved loss function are added to YOLOv5. Meanwhile, to transmit more shallow features to deep layers, the transmission path of the neck was adjusted. The experimental results show that the mAP and F1 scores of the improved YOLOv5 are 0.9534 and 0.9428, which are higher than the corresponding performance values of YOLOv5, and the improved YOLOv5 can overcome the influence of various factors on the detection performance in practical detection scenarios. The method was tested in the orchard environment Intel RealSense D435 was used to collect RGB images and depth images of litchi during the test. The improved YOLOv5 detected litchi fruits in RGB images, the values of their corresponding positions in depth images were read. The experimental results show that the proposed method has high accuracy and strong robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hush发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
2秒前
2秒前
www发布了新的文献求助10
3秒前
时尚冬亦完成签到,获得积分10
4秒前
longL发布了新的文献求助10
4秒前
JamesPei应助醉熏的青筠采纳,获得10
5秒前
5秒前
自觉冷松发布了新的文献求助10
5秒前
Lucas应助wy18567337203采纳,获得10
5秒前
5秒前
李健应助hush采纳,获得10
6秒前
sttich完成签到,获得积分10
6秒前
d123456完成签到,获得积分20
7秒前
PaoPao发布了新的文献求助10
7秒前
丁一发布了新的文献求助10
7秒前
秋秋完成签到,获得积分10
7秒前
星辰大海应助yuanyueyue采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
夏歌蝉发布了新的文献求助10
9秒前
10秒前
风2完成签到,获得积分10
10秒前
smottom应助王贾贾采纳,获得10
10秒前
10秒前
可可完成签到 ,获得积分10
11秒前
11秒前
12秒前
biu完成签到 ,获得积分10
12秒前
元谷雪发布了新的文献求助10
12秒前
PaoPao完成签到,获得积分10
12秒前
zwjhbz完成签到,获得积分10
12秒前
紫气东来完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
15秒前
DYT完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783916
求助须知:如何正确求助?哪些是违规求助? 5679757
关于积分的说明 15462629
捐赠科研通 4913287
什么是DOI,文献DOI怎么找? 2644568
邀请新用户注册赠送积分活动 1592378
关于科研通互助平台的介绍 1547002