亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection and Location of Litchi Fruit based on Object Detector and Depth Image

探测器 计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 图像(数学) 计算机图形学(图像) 模式识别(心理学) 电信
作者
Mao Liang,Zhishang Liang,Yinqiao Peng,Ji Wang,Linlin Wang
标识
DOI:10.1109/aeeca59734.2023.00163
摘要

Computer vision is the core of harvesting robots, and computer vision-based litchi fruit detection is an important direction for research on automated harvesting. However, the current detection methods of litchi fruit cannot meet the detection requirements in the complex orchard environment and cannot simultaneously detect a single litchi fruit and calculate the spatial location of the fruit. In this paper, a detection and location method based on object detector and depth images was proposed in this paper for litchi fruit in an orchard environment. After comparing the performance of multiple object detectors, YOLOv5 was chosen as the base model for litchi detection. An attention function and an improved loss function are added to YOLOv5. Meanwhile, to transmit more shallow features to deep layers, the transmission path of the neck was adjusted. The experimental results show that the mAP and F1 scores of the improved YOLOv5 are 0.9534 and 0.9428, which are higher than the corresponding performance values of YOLOv5, and the improved YOLOv5 can overcome the influence of various factors on the detection performance in practical detection scenarios. The method was tested in the orchard environment Intel RealSense D435 was used to collect RGB images and depth images of litchi during the test. The improved YOLOv5 detected litchi fruits in RGB images, the values of their corresponding positions in depth images were read. The experimental results show that the proposed method has high accuracy and strong robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啵子发布了新的文献求助10
5秒前
旺仔先生完成签到,获得积分10
9秒前
9秒前
ll完成签到 ,获得积分10
11秒前
weiut发布了新的文献求助10
18秒前
852应助mjsdx采纳,获得10
23秒前
zhaoshuo发布了新的文献求助10
27秒前
HJJHJH完成签到,获得积分10
30秒前
桐桐应助冀东采纳,获得30
33秒前
34秒前
CodeCraft应助啵子采纳,获得10
34秒前
HJJHJH发布了新的文献求助30
34秒前
aks关闭了aks文献求助
35秒前
42秒前
量子星尘发布了新的文献求助10
42秒前
43秒前
45秒前
46秒前
庭柯南桥发布了新的文献求助10
46秒前
风华正茂完成签到,获得积分10
48秒前
Kirin完成签到,获得积分10
51秒前
52秒前
Tree完成签到 ,获得积分10
53秒前
脑洞疼应助科研通管家采纳,获得10
57秒前
在水一方应助科研通管家采纳,获得10
57秒前
Hello应助科研通管家采纳,获得10
57秒前
yr应助科研通管家采纳,获得10
57秒前
梨凉发布了新的文献求助10
58秒前
大胆剑封完成签到,获得积分10
1分钟前
壮观的谷冬完成签到 ,获得积分0
1分钟前
1分钟前
春樹暮雲完成签到 ,获得积分10
1分钟前
1分钟前
冀东发布了新的文献求助30
1分钟前
FashionBoy应助zhaoshuo采纳,获得10
1分钟前
1分钟前
李桂芳完成签到,获得积分10
1分钟前
JamesPei应助饶子阳采纳,获得10
1分钟前
paradox完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779942
求助须知:如何正确求助?哪些是违规求助? 5650975
关于积分的说明 15452581
捐赠科研通 4910875
什么是DOI,文献DOI怎么找? 2643040
邀请新用户注册赠送积分活动 1590694
关于科研通互助平台的介绍 1545122