Detection and Location of Litchi Fruit based on Object Detector and Depth Image

探测器 计算机视觉 人工智能 计算机科学 目标检测 对象(语法) 图像(数学) 计算机图形学(图像) 模式识别(心理学) 电信
作者
Mao Liang,Zhishang Liang,Yinqiao Peng,Ji Wang,Linlin Wang
标识
DOI:10.1109/aeeca59734.2023.00163
摘要

Computer vision is the core of harvesting robots, and computer vision-based litchi fruit detection is an important direction for research on automated harvesting. However, the current detection methods of litchi fruit cannot meet the detection requirements in the complex orchard environment and cannot simultaneously detect a single litchi fruit and calculate the spatial location of the fruit. In this paper, a detection and location method based on object detector and depth images was proposed in this paper for litchi fruit in an orchard environment. After comparing the performance of multiple object detectors, YOLOv5 was chosen as the base model for litchi detection. An attention function and an improved loss function are added to YOLOv5. Meanwhile, to transmit more shallow features to deep layers, the transmission path of the neck was adjusted. The experimental results show that the mAP and F1 scores of the improved YOLOv5 are 0.9534 and 0.9428, which are higher than the corresponding performance values of YOLOv5, and the improved YOLOv5 can overcome the influence of various factors on the detection performance in practical detection scenarios. The method was tested in the orchard environment Intel RealSense D435 was used to collect RGB images and depth images of litchi during the test. The improved YOLOv5 detected litchi fruits in RGB images, the values of their corresponding positions in depth images were read. The experimental results show that the proposed method has high accuracy and strong robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠F完成签到 ,获得积分10
1秒前
hai发布了新的文献求助10
1秒前
1秒前
李健应助xiaohei采纳,获得10
1秒前
jacky_cjc1关注了科研通微信公众号
1秒前
2秒前
哈哈哈哈发布了新的文献求助10
2秒前
SCI发发发布了新的文献求助10
3秒前
vinh完成签到,获得积分10
3秒前
潭镜发布了新的文献求助10
4秒前
tinty发布了新的文献求助10
4秒前
超级的青荷完成签到 ,获得积分10
5秒前
5秒前
5秒前
清璃发布了新的文献求助10
5秒前
喜羊羊与灰太狼完成签到,获得积分20
5秒前
dcc发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助心机之蛙采纳,获得10
6秒前
7秒前
科研通AI6应助Li F采纳,获得10
7秒前
懂123完成签到,获得积分10
7秒前
7秒前
赘婿应助Grace采纳,获得10
8秒前
周学发布了新的文献求助20
8秒前
敏感凡之发布了新的文献求助30
8秒前
8秒前
9秒前
多多发布了新的文献求助10
10秒前
五十圆香芹完成签到,获得积分10
10秒前
ludong_0发布了新的文献求助10
10秒前
10秒前
Zx_1993应助Ainccci采纳,获得40
10秒前
虚心的芷蝶完成签到,获得积分10
11秒前
小羊羊发布了新的文献求助10
11秒前
科研通AI6应助聪明凌雪采纳,获得10
11秒前
慕青应助聪明凌雪采纳,获得30
11秒前
小马甲应助tomatoli采纳,获得20
11秒前
12秒前
浮游应助别吃小米粥采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479337
求助须知:如何正确求助?哪些是违规求助? 4580925
关于积分的说明 14377452
捐赠科研通 4509459
什么是DOI,文献DOI怎么找? 2471322
邀请新用户注册赠送积分活动 1457836
关于科研通互助平台的介绍 1431668