Texture preserving low dose CT image denoising using Pearson divergence

均方误差 模式识别(心理学) 人工智能 特征(语言学) 数学 降噪 分歧(语言学) 估计员 特征向量 纹理(宇宙学) 计算机科学 噪音(视频) 图像(数学) 统计 语言学 哲学
作者
Jieun Oh,Dufan Wu,Boohwi Hong,Dongheon Lee,Min‐Woong Kang,Quanzheng Li,Kyungsang Kim
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
标识
DOI:10.1088/1361-6560/ad45a4
摘要

Abstract Objective: The mean squared error (MSE), also known as $L_2$ loss, has been widely used as a loss function to optimize image denoising models due to its strong performance as a mean estimator of the Gaussian noise model. Recently, various low-dose computed tomography (LDCT) image denoising methods using deep learning combined with the MSE loss have been developed; however, this approach has been observed to suffer from the regression-to-the-mean problem, leading to over-smoothed edges and degradation of texture in the image.
Approach: To overcome this issue, we propose a stochastic function in the loss function to improve the texture of the denoised CT images, rather than relying on complicated networks or feature space losses. The proposed loss function includes the MSE loss to learn the mean distribution and the Pearson divergence loss to learn feature textures. Specifically, the Pearson divergence loss is computed in an image space to measure the distance between two intensity measures of denoised low-dose and normal-dose CT images. The evaluation of the proposed model employs a novel approach of multi-metric quantitative analysis utilizing relative texture feature distance.
Results: Our experimental results show that the proposed Pearson divergence loss leads to a significant improvement in texture compared to the conventional MSE loss and generative adversarial network (GAN), both qualitatively and quantitatively.
Significance: Achieving consistent texture preservation in LDCT is a challenge in conventional GAN-type methods due to adversarial aspects aimed at minimizing noise while preserving texture. By incorporating the Pearson regularizer in the loss function, we can easily achieve a balance between two conflicting properties. Consistent high-quality CT images can significantly help clinicians in diagnoses and supporting researchers in the development of AI-diagnostic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅含莲发布了新的文献求助20
1秒前
2秒前
爆米花应助霍小美采纳,获得10
2秒前
2秒前
美丽芒果关注了科研通微信公众号
2秒前
2秒前
purplelove发布了新的文献求助40
2秒前
FY完成签到,获得积分10
3秒前
4秒前
4秒前
文于发布了新的文献求助10
4秒前
4秒前
自觉子默关注了科研通微信公众号
4秒前
糊涂的惠完成签到,获得积分20
5秒前
呀12345发布了新的文献求助10
5秒前
5秒前
余江蝉完成签到,获得积分10
5秒前
6秒前
cyc完成签到,获得积分10
6秒前
超帅的怡发布了新的文献求助10
7秒前
7秒前
阳光海云完成签到,获得积分10
7秒前
登登发布了新的文献求助10
7秒前
墨曦发布了新的文献求助10
7秒前
FashionBoy应助Kenny采纳,获得10
7秒前
8秒前
Bake发布了新的文献求助10
9秒前
9秒前
银雀w发布了新的文献求助10
9秒前
9秒前
肖肖完成签到,获得积分10
9秒前
安安发布了新的文献求助10
10秒前
11秒前
彭于晏发布了新的文献求助20
11秒前
温柔的擎完成签到,获得积分10
11秒前
11秒前
11秒前
Hello应助禹晓兰采纳,获得10
11秒前
tuanheqi应助阳光海云采纳,获得50
11秒前
SMQ发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144780
求助须知:如何正确求助?哪些是违规求助? 2796171
关于积分的说明 7818496
捐赠科研通 2452363
什么是DOI,文献DOI怎么找? 1304950
科研通“疑难数据库(出版商)”最低求助积分说明 627377
版权声明 601449