Texture-preserving low dose CT image denoising using Pearson divergence

模式识别(心理学) 人工智能 图像去噪 皮尔逊积矩相关系数 数学 降噪 分歧(语言学) 纹理(宇宙学) 计算机科学 计算机视觉 图像(数学) 核医学 医学 统计 语言学 哲学
作者
Jieun Oh,Dufan Wu,Boohwi Hong,Dongheon Lee,Min‐Woong Kang,Quanzheng Li,Kyungsang Kim
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (11): 115021-115021 被引量:1
标识
DOI:10.1088/1361-6560/ad45a4
摘要

Abstract Objective. The mean squared error (MSE), also known as L 2 loss, has been widely used as a loss function to optimize image denoising models due to its strong performance as a mean estimator of the Gaussian noise model. Recently, various low-dose computed tomography (LDCT) image denoising methods using deep learning combined with the MSE loss have been developed; however, this approach has been observed to suffer from the regression-to-the-mean problem, leading to over-smoothed edges and degradation of texture in the image. Approach. To overcome this issue, we propose a stochastic function in the loss function to improve the texture of the denoised CT images, rather than relying on complicated networks or feature space losses. The proposed loss function includes the MSE loss to learn the mean distribution and the Pearson divergence loss to learn feature textures. Specifically, the Pearson divergence loss is computed in an image space to measure the distance between two intensity measures of denoised low-dose and normal-dose CT images. The evaluation of the proposed model employs a novel approach of multi-metric quantitative analysis utilizing relative texture feature distance. Results. Our experimental results show that the proposed Pearson divergence loss leads to a significant improvement in texture compared to the conventional MSE loss and generative adversarial network (GAN), both qualitatively and quantitatively. Significance. Achieving consistent texture preservation in LDCT is a challenge in conventional GAN-type methods due to adversarial aspects aimed at minimizing noise while preserving texture. By incorporating the Pearson regularizer in the loss function, we can easily achieve a balance between two conflicting properties. Consistent high-quality CT images can significantly help clinicians in diagnoses and supporting researchers in the development of AI-diagnostic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡迪亚比完成签到,获得积分10
刚刚
刚刚
香蕉觅云应助小朱佩奇采纳,获得10
1秒前
无语的代真完成签到,获得积分10
1秒前
2秒前
包凡之完成签到,获得积分10
3秒前
情怀应助自由橘子采纳,获得10
3秒前
zzz发布了新的文献求助10
3秒前
CipherSage应助1111111111111采纳,获得10
4秒前
搞怪南风完成签到,获得积分10
4秒前
文章使我快了完成签到,获得积分10
4秒前
cooper完成签到 ,获得积分10
5秒前
Ou发布了新的文献求助10
5秒前
sxx完成签到,获得积分10
5秒前
上官若男应助tanglu采纳,获得10
5秒前
麋鹿完成签到 ,获得积分10
5秒前
公西翠萱完成签到 ,获得积分10
5秒前
qixiaoqi发布了新的文献求助10
6秒前
博慧完成签到 ,获得积分10
7秒前
小刘医生完成签到,获得积分10
9秒前
安安完成签到,获得积分10
9秒前
啊啊啊啊完成签到,获得积分10
9秒前
英俊的铭应助飞飞鱼采纳,获得10
11秒前
科目三应助zzz采纳,获得10
11秒前
小小西瓜萝卜青菜完成签到,获得积分10
11秒前
思源应助虚幻采枫采纳,获得10
12秒前
12秒前
不安的可乐完成签到,获得积分10
12秒前
13秒前
nano完成签到 ,获得积分10
13秒前
da完成签到,获得积分10
13秒前
科研通AI2S应助啊啊啊啊采纳,获得10
14秒前
cyndi发布了新的文献求助20
14秒前
15秒前
852应助小小西瓜萝卜青菜采纳,获得10
17秒前
sci完成签到,获得积分10
18秒前
醉熏的鑫发布了新的文献求助10
19秒前
Nizarn发布了新的文献求助10
19秒前
20秒前
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds第二卷 1200
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066