Texture-preserving low dose CT image denoising using Pearson divergence

模式识别(心理学) 人工智能 图像去噪 皮尔逊积矩相关系数 数学 降噪 分歧(语言学) 纹理(宇宙学) 计算机科学 计算机视觉 图像(数学) 核医学 医学 统计 语言学 哲学
作者
Jieun Oh,Dufan Wu,Boohwi Hong,Dongheon Lee,Min‐Woong Kang,Quanzheng Li,Kyungsang Kim
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (11): 115021-115021 被引量:1
标识
DOI:10.1088/1361-6560/ad45a4
摘要

Abstract Objective. The mean squared error (MSE), also known as L 2 loss, has been widely used as a loss function to optimize image denoising models due to its strong performance as a mean estimator of the Gaussian noise model. Recently, various low-dose computed tomography (LDCT) image denoising methods using deep learning combined with the MSE loss have been developed; however, this approach has been observed to suffer from the regression-to-the-mean problem, leading to over-smoothed edges and degradation of texture in the image. Approach. To overcome this issue, we propose a stochastic function in the loss function to improve the texture of the denoised CT images, rather than relying on complicated networks or feature space losses. The proposed loss function includes the MSE loss to learn the mean distribution and the Pearson divergence loss to learn feature textures. Specifically, the Pearson divergence loss is computed in an image space to measure the distance between two intensity measures of denoised low-dose and normal-dose CT images. The evaluation of the proposed model employs a novel approach of multi-metric quantitative analysis utilizing relative texture feature distance. Results. Our experimental results show that the proposed Pearson divergence loss leads to a significant improvement in texture compared to the conventional MSE loss and generative adversarial network (GAN), both qualitatively and quantitatively. Significance. Achieving consistent texture preservation in LDCT is a challenge in conventional GAN-type methods due to adversarial aspects aimed at minimizing noise while preserving texture. By incorporating the Pearson regularizer in the loss function, we can easily achieve a balance between two conflicting properties. Consistent high-quality CT images can significantly help clinicians in diagnoses and supporting researchers in the development of AI-diagnostic models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助飘逸之玉采纳,获得10
刚刚
勤劳初雪发布了新的文献求助10
1秒前
wm鹏睿完成签到 ,获得积分10
1秒前
1秒前
lengchitu完成签到,获得积分10
1秒前
WD完成签到,获得积分10
2秒前
LMW应助积极的白秋采纳,获得10
2秒前
2秒前
坚强馒头发布了新的文献求助20
3秒前
YCYycy发布了新的文献求助10
3秒前
丘比特应助小刘采纳,获得10
4秒前
1282941496完成签到,获得积分10
4秒前
zhao完成签到,获得积分10
4秒前
Zel博博完成签到,获得积分10
4秒前
是风动完成签到 ,获得积分10
4秒前
苽峰完成签到,获得积分10
5秒前
cyyyyyyyyyy完成签到,获得积分10
5秒前
5秒前
less发布了新的文献求助10
6秒前
齐齐完成签到,获得积分10
6秒前
漫步云端完成签到,获得积分10
7秒前
Renee完成签到,获得积分10
7秒前
小黄鸭完成签到,获得积分10
7秒前
笨笨千亦发布了新的文献求助10
7秒前
8秒前
8秒前
ice完成签到,获得积分10
8秒前
丹丹完成签到,获得积分20
8秒前
AronHUANG完成签到,获得积分10
8秒前
陌上尘开发布了新的文献求助10
8秒前
小杨发布了新的文献求助10
9秒前
王炸完成签到,获得积分10
9秒前
大个应助汪哈七采纳,获得10
9秒前
阿庆完成签到,获得积分10
10秒前
10秒前
zhangweiji发布了新的文献求助10
11秒前
guo给guo的求助进行了留言
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
科研通AI5应助白曼冬采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743