生物污染
生物膜
微生物学
涂层
化学
材料科学
纳米技术
细菌
生物
生物化学
膜
遗传学
作者
Limin Qu,Xiangzhou Li,Jun Zhou,Xuyun Peng,Peng Zhou,Hanzhe Zheng,Zhi Qiang Jiang,Qiuen Xie
标识
DOI:10.1016/j.colsurfb.2024.113939
摘要
Chronic infections caused by the pathogenic biofilms on implantable medical devices pose an increasing challenge. To combat long-term biofilm-associated infections, we developed a novel dual-functional polymer coating with antibacterial and antifouling properties. The coating consists of N-vinylpyrrolidone (NVP) and 3-(acrylamido)phenylboronic acid (APBA) copolymer brushes, which bind to curcumin (Cur) as antibacterial molecules through acid-responsive boronate ester bonds. In this surface design, the hydrophilic poly (N-vinylpyrrolidone) (PVP) component improved antifouling performance and effectively prevented bacterial adhesion and aggregation during the initial phases. The poly (3-(acrylamido) phenylboronic acid) (PAPBA, abbreviated PB) component provided binding sites for Cur by forming acid-responsive boronate ester bonds. When fewer bacteria overcame the anti-adhesion barrier and colonized, the surface responded to the decreased microenvironmental pH by breaking the boronate ester bonds and releasing curcumin. This responsive mechanism enabled Cur to interfere with biofilm formation and provide a multilayer anti-biofilm protection system. The coating showed excellent antibacterial properties against Escherichia coli and Staphylococcus aureus, preventing biofilm formation for up to 7 days. The coating also inhibited protein adsorption and platelet adhesion significantly. This coating also exhibited high biocompatibility with animal erythrocytes and pre-osteoblasts. This research offers a promising approach for developing novel smart anti-biofilm coating materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI