Catalytic oxidation of the hazardous DMF exhaust gas presents a significant challenge in balancing oxidation activity and products selectivity (CO,NOx,N2,etc.). It is found that Cu/H-MOR demonstrates superior performance for DMF oxidation compared to CuO on other supports (γ-Al2O3,HY,ZSM-5) in terms of product selectivity and stability. The geometric and electronic structures of CuO active sites in Cu/H-MOR have been regulated by CeO2 promoter, leading to an increase in the ratio of active CuO (highly dispersed CuO and Cu+ specie). As a result, the oxidation activity and stability of the Cu/H-MOR catalyst were enhanced for DMF oxidation. However, excessive CuO or CeO2 content led to decreased N2 selectivity due to over-high oxidation activity. It is also revealed that Ce3+ species, active CuO species, and surface acid sites play a critical role in internal selective catalytic reduction reaction during DMF oxidation. The 10Cu-Ce/H-MOR (1/4) catalyst exhibited both high oxidation activity and internal selective catalytic reduction activity due to its abundance of active CuO specie as well as Ce3+ species and surface acid sites. Consequently, the 10Cu-Ce/H-MOR (1/4) catalyst demonstrated the widest temperature window for DMF oxidation with high N2 selectivity. These findings emphasize the importance of surface active sites modification for DMF oxidation.