An Underwater Crack Detection Method Based on Improved Yolov8

水下 计算机科学 地质学 海洋学
作者
Xiaofei Li,Langxing Xu,Mengpu Wei,Lixiao Zhang,Chen Zhang
标识
DOI:10.2139/ssrn.4839350
摘要

Detecting underwater cracks in ocean engineering structures is crucial for their maintenance. Research on deep learning methods based on computer vision for crack detection has become a hot topic recently. Datasets have a significant impact on the accuracy of deep learning networks, however, datasets for underwater environments are extremely scarce due to conditional difficulties. Therefore, this paper artificially made concrete crack test blocks and took underwater images. The denoising diffusion probabilistic model (DDPM) was used to expand the dataset to increase the number of images to support neural network training. In the dataset, blurry images affect the recognition efficiency due to insufficient clarity in the underwater environment. To solve this problem, this paper adopts the wavelet transform combined with the histogram algorithm for image enhancement. This paper proposes an improved YOLOv8 network to recognize these crack. Compared with the YOLOv8 series network, it has the advantages of both accuracy and model size. The network is lighter, and it has a good effect on underwater image recognition. Moreover, to get the crack data information, this paper uses the skeleton extraction of the underwater cracks and the curve fitting method for the measurement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luoyx完成签到,获得积分10
1秒前
FashionBoy应助纪俊采纳,获得10
1秒前
ChampionJ发布了新的文献求助10
2秒前
2秒前
小蘑菇应助胡萝北丁采纳,获得10
2秒前
3秒前
读文献啦发布了新的文献求助10
4秒前
脑洞疼应助连冷安采纳,获得10
5秒前
科研狗完成签到,获得积分10
5秒前
Akim应助SHIKI采纳,获得10
8秒前
8秒前
慕青应助超级绫采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
xmhxpz发布了新的文献求助10
12秒前
12秒前
14秒前
蓝色发布了新的文献求助10
14秒前
张磊发布了新的文献求助10
14秒前
huan完成签到,获得积分10
15秒前
XJYXJY完成签到,获得积分10
16秒前
美丽梦秋完成签到,获得积分10
16秒前
Xiaoming85发布了新的文献求助10
16秒前
xiangshu完成签到,获得积分10
17秒前
17秒前
icaohao发布了新的文献求助10
19秒前
19秒前
20秒前
22秒前
24秒前
余额12138发布了新的文献求助10
24秒前
连冷安发布了新的文献求助10
24秒前
震动的果汁完成签到,获得积分10
26秒前
Orange应助曼城是冠军采纳,获得30
27秒前
27秒前
piglet完成签到,获得积分10
28秒前
28秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313509
求助须知:如何正确求助?哪些是违规求助? 2945856
关于积分的说明 8527337
捐赠科研通 2621533
什么是DOI,文献DOI怎么找? 1433736
科研通“疑难数据库(出版商)”最低求助积分说明 665098
邀请新用户注册赠送积分活动 650613