A fast method for predicting adenosine content in porcini mushrooms using Fourier transform near-infrared spectroscopy combined with regression model

内容(测量理论) 残余物 腺苷 线性回归 校准 标准差 偏最小二乘回归 分析化学(期刊) 相对标准差 化学 生物系统 数学 统计 色谱法 检出限 算法 生物 生物化学 数学分析
作者
Guangmei Deng,Jieqing Li,Honggao Liu,Yuanzhong Wang
出处
期刊:Lebensmittel-Wissenschaft & Technologie [Elsevier]
卷期号:201: 116243-116243 被引量:4
标识
DOI:10.1016/j.lwt.2024.116243
摘要

Adenosine is an endogenous neuroprotective agent. It is of great importance to research the porcini mushrooms' adenosine for developing products. However, problems, such as the old for new and traditional methods for detecting adenosine content are complicated and time-consuming, seriously restrict industrial development. The present study aimed to achieve a rapid quantification of adenosine content in porcini mushrooms on the market using Fourier transform near-infrared (FT-NIR) spectroscopy combined with partial least squares regression (PLSR) model. Herein, the nucleoside content and spectral characteristics of the large-scale dataset (n=242) were analyzed, which was used as the calibration set for constructing the PLSR model. The PLSR model had an R2 C of 0.907 and a residual predictive deviation (RPD) of 2.726. For random samples with different origins, the R2 P was 0.768 and the RPD was 1.326, for the storage period, the R2 P was 0.952 and the RPD was 3.069, and for various collection years, the R2 P was 0.927 and the RPD was 2.548. It was demonstrated that the established method offers a rapid and reliable prediction strategy for adenosine content of random porcini mushrooms samples, which has the potential to be applied in the market.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助科研通管家采纳,获得10
刚刚
核桃应助科研通管家采纳,获得30
刚刚
Hello应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
能干巨人应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
Criminology34应助科研通管家采纳,获得10
刚刚
核桃应助科研通管家采纳,获得30
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
momo应助科研通管家采纳,获得10
1秒前
1秒前
CodeCraft应助宋礼采纳,获得10
1秒前
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
BowieHuang应助ivy采纳,获得10
2秒前
酷波er应助ivy采纳,获得10
2秒前
William鉴哲发布了新的文献求助10
2秒前
3秒前
jj发布了新的文献求助10
4秒前
RK_404发布了新的文献求助10
5秒前
一一应助顺心傲南采纳,获得10
6秒前
w1b完成签到,获得积分10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685