A fast method for predicting adenosine content in porcini mushrooms using Fourier transform near-infrared spectroscopy combined with regression model

内容(测量理论) 残余物 腺苷 线性回归 校准 标准差 偏最小二乘回归 分析化学(期刊) 相对标准差 化学 生物系统 数学 统计 色谱法 检出限 算法 生物 生物化学 数学分析
作者
Guangmei Deng,Jieqing Li,Honggao Liu,Yuanzhong Wang
出处
期刊:Lebensmittel-Wissenschaft & Technologie [Elsevier]
卷期号:201: 116243-116243 被引量:4
标识
DOI:10.1016/j.lwt.2024.116243
摘要

Adenosine is an endogenous neuroprotective agent. It is of great importance to research the porcini mushrooms' adenosine for developing products. However, problems, such as the old for new and traditional methods for detecting adenosine content are complicated and time-consuming, seriously restrict industrial development. The present study aimed to achieve a rapid quantification of adenosine content in porcini mushrooms on the market using Fourier transform near-infrared (FT-NIR) spectroscopy combined with partial least squares regression (PLSR) model. Herein, the nucleoside content and spectral characteristics of the large-scale dataset (n=242) were analyzed, which was used as the calibration set for constructing the PLSR model. The PLSR model had an R2 C of 0.907 and a residual predictive deviation (RPD) of 2.726. For random samples with different origins, the R2 P was 0.768 and the RPD was 1.326, for the storage period, the R2 P was 0.952 and the RPD was 3.069, and for various collection years, the R2 P was 0.927 and the RPD was 2.548. It was demonstrated that the established method offers a rapid and reliable prediction strategy for adenosine content of random porcini mushrooms samples, which has the potential to be applied in the market.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mushini发布了新的文献求助10
1秒前
Akim应助能干储采纳,获得10
2秒前
2秒前
lxm完成签到,获得积分10
3秒前
11赫兹发布了新的文献求助50
4秒前
zhy发布了新的文献求助10
4秒前
sanyue发布了新的文献求助10
4秒前
yy发布了新的文献求助10
5秒前
刘梅发布了新的文献求助10
5秒前
MoonByMoon发布了新的文献求助10
5秒前
5秒前
6秒前
ly完成签到,获得积分10
6秒前
有魅力曼荷完成签到,获得积分10
6秒前
传奇3应助柚子茶采纳,获得10
6秒前
6秒前
7秒前
7秒前
七寻笑完成签到,获得积分20
8秒前
岳元满发布了新的文献求助10
8秒前
zhy完成签到,获得积分10
10秒前
Aieur完成签到,获得积分10
10秒前
吃货发布了新的文献求助10
11秒前
panzhongjie完成签到,获得积分10
12秒前
CodeCraft应助KKKKK采纳,获得10
12秒前
mushini完成签到,获得积分10
13秒前
赘婿应助七寻笑采纳,获得10
14秒前
SaSa发布了新的文献求助10
14秒前
ly发布了新的文献求助10
15秒前
15秒前
15秒前
miu完成签到,获得积分10
16秒前
星辰大海应助岳元满采纳,获得10
16秒前
李爱国应助Georges-09采纳,获得10
17秒前
17秒前
20秒前
领导范儿应助MoonByMoon采纳,获得10
20秒前
zcxxxxxxx完成签到,获得积分10
20秒前
728发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909