Analysis on Improved Gaussian-Wiener filtering technique and GLCM based Feature Extraction for Breast Cancer Diagnosis

计算机科学 乳腺癌 高斯分布 人工智能 模式识别(心理学) 特征(语言学) 特征提取 维纳滤波器 萃取(化学) 癌症 医学 色谱法 内科学 物理 哲学 量子力学 化学 语言学
作者
K. V. Ranjitha,T. P. Pushphavathi
出处
期刊:Procedia Computer Science [Elsevier]
卷期号:235: 2857-2866
标识
DOI:10.1016/j.procs.2024.04.270
摘要

Breast cancer is become the most prevailing and fastest growing disease. In medical imaging, the use of machine learning and deep learning algorithms is essential. Classification of the tumor to predict the chemotherapy response for survival is trivial. In this paper, an innovative Gaussian-Wiener filter combination is used for de-noising the MRI images. These pre-processed images with good image quality are selected for tumor detection. On the basis of these pre-processed outputs, important features are extracted to determine the spatial relationship between the image pixels which results in better texture analysis for the tumor images. Analysis is made on the ISPY-2 trial breast MRI database. Results are analyzed which gives better image quality performance for MRI images. The filters and feature extraction method analyzed is used further in the segmentation and optimization process for breast detection and diagnosis to get the best accuracy of nearly 100%. The results also show better texture analysis for extracting features using GLCM based method. Furthermore, the MRI images for these methods used are explained for better performance in the process of breast cancer detection and diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的背包完成签到,获得积分10
1秒前
1秒前
赘婿应助Elaine采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
科研小白完成签到,获得积分10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得50
2秒前
CodeCraft应助科研通管家采纳,获得30
2秒前
控制小弟应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
彭于晏完成签到,获得积分10
3秒前
勤劳元瑶完成签到,获得积分10
3秒前
whatever举报muzi求助涉嫌违规
4秒前
小白发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
搬砖工完成签到,获得积分10
5秒前
Lucas应助圈圈采纳,获得10
6秒前
NexusExplorer应助韭菜盒子采纳,获得10
6秒前
6秒前
Harlotte发布了新的文献求助10
6秒前
就是我完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740