亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DRPSO:A multi-strategy fusion particle swarm optimization algorithm with a replacement mechanisms for colon cancer pathology image segmentation

粒子群优化 计算机科学 人工智能 分割 图像(数学) 结直肠癌 模式识别(心理学) 融合 图像分割 癌症 计算机视觉 算法 医学 内科学 语言学 哲学
作者
Gang Hu,Yixuan Zheng,Essam H. Houssein,Guo Wei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108780-108780
标识
DOI:10.1016/j.compbiomed.2024.108780
摘要

Colon adenocarcinoma (COAD) is a type of colon cancers with a high mortality rate. Its early symptoms are not obvious, and its late stage is accompanied by various complications that seriously endanger patients' lives. To assist in the early diagnosis of COAD and improve the detection efficiency of COAD, this paper proposes a multi-level threshold image segmentation (MIS) method based on an enhanced particle swarm algorithm for segmenting COAD images. Firstly, this paper proposes a multi-strategy fusion particle swarm optimization algorithm (DRPSO) with a replacement mechanism. The non-linear inertia weight and sine-cosine learning factors in DRPSO help balance the exploration and exploitation phases of the algorithm. The population reorganization strategy incorporating MGO enhances population diversity and effectively prevents the algorithm from stagnating prematurely. The mutation-based final replacement mechanism enhances the algorithm's ability to escape local optima and helps the algorithm to obtain highly accurate solutions. In addition, comparison experiments on the CEC2020 and CEC2022 test sets show that DRPSO outperforms other state-of-the-art algorithms in terms of convergence accuracy and speed. Secondly, by combining the non-local mean 2D histogram and 2D Renyi entropy, this paper proposes a DRPSO algorithm based MIS method, which is successfully applied to the segments the COAD pathology image problem. The results of segmentation experiments show that the above method obtains relatively higher quality segmented images with superior performance metrics: PSNR = 23.556, SSIM = 0.825, and FSIM = 0.922. In conclusion, the MIS method based on the DRPSO algorithm shows great potential in assisting COAD diagnosis and in pathology image segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BowieHuang应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
23秒前
王朝阳完成签到 ,获得积分10
56秒前
月月月完成签到,获得积分10
1分钟前
1分钟前
1分钟前
英姑应助www采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
聪明宛秋完成签到 ,获得积分10
2分钟前
www发布了新的文献求助10
2分钟前
小鱼完成签到 ,获得积分10
2分钟前
2分钟前
烟花应助Marciu33采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
Marciu33发布了新的文献求助10
3分钟前
3分钟前
上官若男应助默默的板栗采纳,获得10
3分钟前
3分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
小唐完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
chenlc971125完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
loitinsuen完成签到,获得积分10
5分钟前
5分钟前
在水一方应助me采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534236
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582465
捐赠科研通 4562539
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450924