DRPSO:A multi-strategy fusion particle swarm optimization algorithm with a replacement mechanisms for colon cancer pathology image segmentation

粒子群优化 计算机科学 人工智能 分割 图像(数学) 结直肠癌 模式识别(心理学) 融合 图像分割 癌症 计算机视觉 算法 医学 内科学 语言学 哲学
作者
Gang Hu,Yixuan Zheng,Essam H. Houssein,Guo Wei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108780-108780
标识
DOI:10.1016/j.compbiomed.2024.108780
摘要

Colon adenocarcinoma (COAD) is a type of colon cancers with a high mortality rate. Its early symptoms are not obvious, and its late stage is accompanied by various complications that seriously endanger patients' lives. To assist in the early diagnosis of COAD and improve the detection efficiency of COAD, this paper proposes a multi-level threshold image segmentation (MIS) method based on an enhanced particle swarm algorithm for segmenting COAD images. Firstly, this paper proposes a multi-strategy fusion particle swarm optimization algorithm (DRPSO) with a replacement mechanism. The non-linear inertia weight and sine-cosine learning factors in DRPSO help balance the exploration and exploitation phases of the algorithm. The population reorganization strategy incorporating MGO enhances population diversity and effectively prevents the algorithm from stagnating prematurely. The mutation-based final replacement mechanism enhances the algorithm's ability to escape local optima and helps the algorithm to obtain highly accurate solutions. In addition, comparison experiments on the CEC2020 and CEC2022 test sets show that DRPSO outperforms other state-of-the-art algorithms in terms of convergence accuracy and speed. Secondly, by combining the non-local mean 2D histogram and 2D Renyi entropy, this paper proposes a DRPSO algorithm based MIS method, which is successfully applied to the segments the COAD pathology image problem. The results of segmentation experiments show that the above method obtains relatively higher quality segmented images with superior performance metrics: PSNR = 23.556, SSIM = 0.825, and FSIM = 0.922. In conclusion, the MIS method based on the DRPSO algorithm shows great potential in assisting COAD diagnosis and in pathology image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静谷秋完成签到,获得积分10
刚刚
Ttttt发布了新的文献求助10
1秒前
传奇3应助姚序东采纳,获得10
1秒前
1秒前
Sy发布了新的文献求助10
1秒前
DingShicong完成签到 ,获得积分10
1秒前
2秒前
聂落雁发布了新的文献求助10
2秒前
陈木子发布了新的文献求助10
2秒前
2秒前
朱子完成签到,获得积分10
3秒前
豌豆米应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
Rae完成签到 ,获得积分10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
李庭福发布了新的文献求助10
4秒前
ZX801发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
帅气的绿凝完成签到,获得积分10
4秒前
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
ouyang发布了新的文献求助10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
able应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
5秒前
思源应助科研通管家采纳,获得30
5秒前
852应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得30
6秒前
Kevin完成签到,获得积分10
6秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313