DRPSO:A multi-strategy fusion particle swarm optimization algorithm with a replacement mechanisms for colon cancer pathology image segmentation

粒子群优化 计算机科学 人工智能 分割 图像(数学) 结直肠癌 模式识别(心理学) 融合 图像分割 癌症 计算机视觉 算法 医学 内科学 语言学 哲学
作者
Gang Hu,Yixuan Zheng,Essam H. Houssein,Guo Wei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108780-108780 被引量:19
标识
DOI:10.1016/j.compbiomed.2024.108780
摘要

Colon adenocarcinoma (COAD) is a type of colon cancers with a high mortality rate. Its early symptoms are not obvious, and its late stage is accompanied by various complications that seriously endanger patients' lives. To assist in the early diagnosis of COAD and improve the detection efficiency of COAD, this paper proposes a multi-level threshold image segmentation (MIS) method based on an enhanced particle swarm algorithm for segmenting COAD images. Firstly, this paper proposes a multi-strategy fusion particle swarm optimization algorithm (DRPSO) with a replacement mechanism. The non-linear inertia weight and sine-cosine learning factors in DRPSO help balance the exploration and exploitation phases of the algorithm. The population reorganization strategy incorporating MGO enhances population diversity and effectively prevents the algorithm from stagnating prematurely. The mutation-based final replacement mechanism enhances the algorithm's ability to escape local optima and helps the algorithm to obtain highly accurate solutions. In addition, comparison experiments on the CEC2020 and CEC2022 test sets show that DRPSO outperforms other state-of-the-art algorithms in terms of convergence accuracy and speed. Secondly, by combining the non-local mean 2D histogram and 2D Renyi entropy, this paper proposes a DRPSO algorithm based MIS method, which is successfully applied to the segments the COAD pathology image problem. The results of segmentation experiments show that the above method obtains relatively higher quality segmented images with superior performance metrics: PSNR = 23.556, SSIM = 0.825, and FSIM = 0.922. In conclusion, the MIS method based on the DRPSO algorithm shows great potential in assisting COAD diagnosis and in pathology image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
11发布了新的文献求助10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
小鱼发布了新的文献求助10
4秒前
脑洞疼应助纯真的魔镜采纳,获得10
5秒前
5秒前
6秒前
zeran完成签到,获得积分10
6秒前
星辰大海应助Catherine_Song采纳,获得10
6秒前
龙江游侠发布了新的文献求助10
7秒前
英姑应助ZZZLJ采纳,获得10
8秒前
sunshine完成签到,获得积分10
9秒前
含蓄青雪发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
kingmp2完成签到 ,获得积分10
12秒前
13秒前
15秒前
会飞的扁担完成签到,获得积分10
15秒前
15秒前
领导范儿应助冷静的孤云采纳,获得10
16秒前
o椰完成签到 ,获得积分10
16秒前
龙江游侠完成签到,获得积分10
17秒前
bravo驳回了orixero应助
19秒前
菠萝发布了新的文献求助10
19秒前
22秒前
木耳完成签到 ,获得积分10
22秒前
22秒前
22秒前
22秒前
科目三应助草莓熊采纳,获得10
24秒前
星辰大海应助鹤轸采纳,获得10
24秒前
24秒前
奋斗初南完成签到,获得积分10
25秒前
25秒前
晓磊发布了新的文献求助10
26秒前
kister完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5777790
求助须知:如何正确求助?哪些是违规求助? 5635616
关于积分的说明 15446728
捐赠科研通 4909661
什么是DOI,文献DOI怎么找? 2641847
邀请新用户注册赠送积分活动 1589769
关于科研通互助平台的介绍 1544261