DRPSO:A multi-strategy fusion particle swarm optimization algorithm with a replacement mechanisms for colon cancer pathology image segmentation

粒子群优化 计算机科学 人工智能 分割 图像(数学) 结直肠癌 模式识别(心理学) 融合 图像分割 癌症 计算机视觉 算法 医学 内科学 语言学 哲学
作者
Gang Hu,Yixuan Zheng,Essam H. Houssein,Guo Wei
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108780-108780
标识
DOI:10.1016/j.compbiomed.2024.108780
摘要

Colon adenocarcinoma (COAD) is a type of colon cancers with a high mortality rate. Its early symptoms are not obvious, and its late stage is accompanied by various complications that seriously endanger patients' lives. To assist in the early diagnosis of COAD and improve the detection efficiency of COAD, this paper proposes a multi-level threshold image segmentation (MIS) method based on an enhanced particle swarm algorithm for segmenting COAD images. Firstly, this paper proposes a multi-strategy fusion particle swarm optimization algorithm (DRPSO) with a replacement mechanism. The non-linear inertia weight and sine-cosine learning factors in DRPSO help balance the exploration and exploitation phases of the algorithm. The population reorganization strategy incorporating MGO enhances population diversity and effectively prevents the algorithm from stagnating prematurely. The mutation-based final replacement mechanism enhances the algorithm's ability to escape local optima and helps the algorithm to obtain highly accurate solutions. In addition, comparison experiments on the CEC2020 and CEC2022 test sets show that DRPSO outperforms other state-of-the-art algorithms in terms of convergence accuracy and speed. Secondly, by combining the non-local mean 2D histogram and 2D Renyi entropy, this paper proposes a DRPSO algorithm based MIS method, which is successfully applied to the segments the COAD pathology image problem. The results of segmentation experiments show that the above method obtains relatively higher quality segmented images with superior performance metrics: PSNR = 23.556, SSIM = 0.825, and FSIM = 0.922. In conclusion, the MIS method based on the DRPSO algorithm shows great potential in assisting COAD diagnosis and in pathology image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
良辰应助科研通管家采纳,获得10
刚刚
Orange应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
Cindy应助科研通管家采纳,获得20
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
vision应助科研通管家采纳,获得10
1秒前
兔兔应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
haikuotian应助科研通管家采纳,获得20
1秒前
所所应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
莱茵河畔发布了新的文献求助10
3秒前
3秒前
lala发布了新的文献求助10
4秒前
宁老大发布了新的文献求助30
5秒前
星辰大海应助QSY采纳,获得10
5秒前
阿大撒2完成签到,获得积分10
6秒前
李爱国应助美满雨莲采纳,获得10
7秒前
8秒前
9秒前
bestwkk完成签到,获得积分10
9秒前
栗子糕完成签到,获得积分20
10秒前
10秒前
12秒前
13秒前
栗子糕发布了新的文献求助10
13秒前
李白白应助LOWRY采纳,获得10
14秒前
14秒前
赫初晴发布了新的文献求助10
16秒前
长孙曼香发布了新的文献求助10
16秒前
17秒前
文献互助1发布了新的文献求助10
18秒前
20秒前
20秒前
yesss完成签到 ,获得积分10
21秒前
大个应助黎初采纳,获得10
21秒前
白真帅完成签到,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125565
求助须知:如何正确求助?哪些是违规求助? 2775869
关于积分的说明 7728200
捐赠科研通 2431356
什么是DOI,文献DOI怎么找? 1291928
科研通“疑难数据库(出版商)”最低求助积分说明 622278
版权声明 600376