生物医学中的光声成像
情态动词
超声波
超声成像
计算机科学
超声成像
声学
人工智能
计算机视觉
材料科学
光学
物理
高分子化学
作者
Sumana Halder,Sankalp Patidar,Koel Chaudhury,Subhamoy Mandal
标识
DOI:10.1109/saus61785.2024.10563622
摘要
This study explores the implementation of an artificial intelligence (AI)-assisted multi-modal imaging platform for renal tissue analysis. Leveraging contrast-enhanced ultrasound (CEUS) and photoacoustic (PA) imaging, it provides a comprehensive view of renal tissues. Using deep learning (DL) models like U-Net and nnU-Net, anatomical structures are accurately segmented in medical ultrasound images. Evaluation metrics confirm the effectiveness of DL models. Functional imaging analysis correlates DL predictions with non-linear constrast (NLC) images to understand renal tissue perfusion dynamics. Future work involves using DL predictions for fluence correction in PA images, enhancing tissue absorption accuracy. This multi-modal approach has potential in clinical diagnostics and disease monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI