ST-MDAMNet: Swin Transformer combines multi-dimensional attention mechanism for semantic segmentation of high-resolution earth surface images

分割 编码器 计算机科学 卷积神经网络 变压器 深度学习 特征提取 模式识别(心理学) 计算机视觉 人工智能 数据挖掘 物理 量子力学 电压 操作系统
作者
Heqing Yang,Bing Li,Haiming Liu,Shuofeng Li
出处
期刊:Advances in Space Research [Elsevier]
标识
DOI:10.1016/j.asr.2024.06.056
摘要

In the derection of remote sensing (RS) image analysis, semantic segmentation, as an important technology, is of key significance for the identification and analysis of land surface cover types. In recent years, applying deep learning models to tasks such as road extraction, water distribution extraction, building classification and building segmentation from RS images has become an important research hotspot. Due to its limited receptive field, traditional convolutional neural networks (CNN) cannot effectively capture global context information. Transformer uses the multi-head self-attention mechanism to capture a wide range of information and can solve this problem well. Therefore, we proposed ST-MDAMNet based on Swin Transformer and combined with the multi-dimensional attention mechanism. First, a feature enhancement module (FAM) is introduced after each stage of the Swin Transformer encoder to effectively enhance the model's proficiency in identifying essential information. Secondly, a feature fusion module (FFM) is proposed to effectively fuse the multi-scale information of the encoder part. It further improves the expression ability of different dimensional features and effectively improves the detection effect of small targets. Ultimately, the fused features are input into the multi-dimensional attention module (MDAM) to carefully optimize the features, which greatly increases the effect of semantic segmentation of RS images. We demonstrate the effectiveness of each module through ablation experiments. Comparative experiments are completed on two publicly large-scale datasets, and the proposed method shows excellent results compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小太阳完成签到,获得积分10
1秒前
王治豪发布了新的文献求助10
1秒前
1秒前
1秒前
djbj2022发布了新的文献求助10
2秒前
2秒前
2秒前
Left发布了新的文献求助10
3秒前
大熊发布了新的文献求助10
4秒前
lenny发布了新的文献求助10
5秒前
天才幸运鱼完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
Mingtiaoxiyue发布了新的文献求助10
6秒前
8秒前
proteinpurify发布了新的文献求助10
8秒前
白水晶发布了新的文献求助10
9秒前
贝壳风铃发布了新的文献求助10
10秒前
CMY完成签到,获得积分20
11秒前
later发布了新的文献求助10
11秒前
CipherSage应助独特大米采纳,获得10
12秒前
13秒前
李健应助研友_LjDyNZ采纳,获得10
13秒前
14秒前
不朽阳神完成签到,获得积分10
14秒前
阿白发布了新的文献求助10
14秒前
lenny完成签到,获得积分10
15秒前
含糊的紫菜完成签到 ,获得积分10
15秒前
巾凡完成签到 ,获得积分10
17秒前
萨赫蛋糕完成签到,获得积分10
17秒前
kento发布了新的文献求助10
18秒前
王十二完成签到 ,获得积分10
18秒前
19秒前
later完成签到,获得积分10
19秒前
21秒前
尼可刹米洛贝林完成签到,获得积分10
21秒前
22秒前
23秒前
老肖应助科研通管家采纳,获得10
23秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142067
求助须知:如何正确求助?哪些是违规求助? 2793006
关于积分的说明 7805015
捐赠科研通 2449359
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291