ST-MDAMNet: Swin Transformer combines multi-dimensional attention mechanism for semantic segmentation of high-resolution earth surface images

分割 编码器 计算机科学 卷积神经网络 变压器 深度学习 特征提取 模式识别(心理学) 计算机视觉 人工智能 数据挖掘 物理 量子力学 电压 操作系统
作者
Heqing Yang,Bing Li,Haiming Liu,Shuofeng Li
出处
期刊:Advances in Space Research [Elsevier BV]
标识
DOI:10.1016/j.asr.2024.06.056
摘要

In the derection of remote sensing (RS) image analysis, semantic segmentation, as an important technology, is of key significance for the identification and analysis of land surface cover types. In recent years, applying deep learning models to tasks such as road extraction, water distribution extraction, building classification and building segmentation from RS images has become an important research hotspot. Due to its limited receptive field, traditional convolutional neural networks (CNN) cannot effectively capture global context information. Transformer uses the multi-head self-attention mechanism to capture a wide range of information and can solve this problem well. Therefore, we proposed ST-MDAMNet based on Swin Transformer and combined with the multi-dimensional attention mechanism. First, a feature enhancement module (FAM) is introduced after each stage of the Swin Transformer encoder to effectively enhance the model's proficiency in identifying essential information. Secondly, a feature fusion module (FFM) is proposed to effectively fuse the multi-scale information of the encoder part. It further improves the expression ability of different dimensional features and effectively improves the detection effect of small targets. Ultimately, the fused features are input into the multi-dimensional attention module (MDAM) to carefully optimize the features, which greatly increases the effect of semantic segmentation of RS images. We demonstrate the effectiveness of each module through ablation experiments. Comparative experiments are completed on two publicly large-scale datasets, and the proposed method shows excellent results compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
香蕉觅云应助seven采纳,获得10
2秒前
古月发布了新的文献求助10
3秒前
雨衣完成签到,获得积分10
4秒前
7秒前
aaaa发布了新的文献求助10
7秒前
能干的小笼包完成签到,获得积分20
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
李爱国应助古月采纳,获得10
9秒前
思源应助judy采纳,获得10
9秒前
9秒前
14秒前
15秒前
科研通AI2S应助ww采纳,获得10
15秒前
拼搏惜金发布了新的文献求助10
17秒前
99668发布了新的文献求助10
17秒前
20秒前
mm发布了新的文献求助30
22秒前
英俊的铭应助SHUSHU采纳,获得10
23秒前
24秒前
99668完成签到,获得积分10
25秒前
m(_._)m完成签到 ,获得积分0
25秒前
27秒前
28秒前
SciGPT应助COCO采纳,获得10
28秒前
yznfly应助能干的小笼包采纳,获得20
29秒前
一天完成签到,获得积分10
29秒前
健壮的四娘完成签到,获得积分10
30秒前
柚子发布了新的文献求助10
31秒前
FashionBoy应助木light采纳,获得10
31秒前
32秒前
热情花生发布了新的文献求助10
33秒前
33秒前
不想科研的小飞象完成签到,获得积分10
35秒前
35秒前
只鱼完成签到 ,获得积分10
36秒前
36秒前
SHUSHU给SHUSHU的求助进行了留言
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956069
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107074
捐赠科研通 3232847
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870396
科研通“疑难数据库(出版商)”最低求助积分说明 802019