Computer Vision and Creative Content Generation: Text-to-Sketch Conversion

素描 计算机科学 内容(测量理论) 计算机图形学(图像) 多媒体 人工智能 计算机视觉 人机交互 算法 数学 数学分析
作者
P Kumar,Senthil Pandi S,T Kumaragurubaran,V. Rahul Chiranjeevi
标识
DOI:10.1109/ic3iot60841.2024.10550294
摘要

Within the field of computer vision and creative content generation, the process of combining visual elements based on textual descriptions has emerged as a captivating area of study and advancement. An intriguing application in this field is text-to-sketch conversion, which employs advanced machine learning methods to convert written descriptions into equivalent sketches or drawings. The utilization of visual representation has consistently proven to be a superior method of communication. Therefore, incorporating visualization in any communicative domain will greatly enhance the efficiency of the process. The objective of this paper is to accomplish this aim. This paper presents the development of an image generator that produces a sketch of a picture using the user's provided description. The produced outline is exhibited on an HTML canvas within a website. The generator employs POS tagging to parse the user's description, then utilizes a hidden layer regression neural network and Sketch RNN to generate the desired image based on the parsed description. The Sketch RNN model, which has been pre-trained on the Quick Draw dataset, is employed to draw sketches of the objects mentioned in the user's description. Additionally, a neural network is utilized to position the objects based on the user's instructions. The result consists of a series of brushstrokes that are rendered on the HTML canvas. The software can be utilized by any system user on any computer, allowing them to input their string using the keyboard. The software can operate efficiently and reliably, even on PCs with minimal hardware specifications. A pre-installed browser allows the user to view the user interface of a web page, where they can input information and receive the corresponding output.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方勇飞发布了新的文献求助10
1秒前
郭菱香完成签到 ,获得积分20
1秒前
皮念寒完成签到,获得积分10
1秒前
顺其自然_666888完成签到,获得积分10
1秒前
2秒前
向上的小v完成签到 ,获得积分10
3秒前
3秒前
5秒前
酷酷紫蓝完成签到 ,获得积分10
5秒前
5秒前
方勇飞完成签到,获得积分10
5秒前
LYZ完成签到,获得积分10
5秒前
黄景滨完成签到 ,获得积分20
6秒前
6秒前
123456完成签到,获得积分20
6秒前
hkl1542完成签到,获得积分10
7秒前
7秒前
caohuijun发布了新的文献求助10
8秒前
杳鸢应助韦颖采纳,获得20
9秒前
9秒前
wshwx完成签到 ,获得积分10
9秒前
9秒前
魏伯安发布了新的文献求助10
10秒前
10秒前
传奇3应助daniel采纳,获得10
10秒前
ding应助帅气的听莲采纳,获得10
10秒前
sunshine完成签到,获得积分10
11秒前
大方嵩发布了新的文献求助10
11秒前
SciGPT应助tianny采纳,获得10
11秒前
skier发布了新的文献求助10
12秒前
HHHWJ完成签到 ,获得积分10
12秒前
敏感的芷发布了新的文献求助10
12秒前
怡然剑成关注了科研通微信公众号
12秒前
共享精神应助zhouleibio采纳,获得10
12秒前
贤惠的早晨完成签到 ,获得积分10
13秒前
六月毕业发布了新的文献求助10
13秒前
科研通AI5应助平常的毛豆采纳,获得10
13秒前
韦颖完成签到,获得积分20
15秒前
沉默的冬寒完成签到 ,获得积分10
16秒前
海科科给海科科的求助进行了留言
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824