A multiscale neural architecture search framework for multimodal fusion

计算机科学 稳健性(进化) 人工智能 机器学习 传感器融合 融合 融合机制 过程(计算) 渲染(计算机图形) 数据挖掘 语言学 哲学 生物化学 化学 脂质双层融合 基因 操作系统
作者
Jindi Lv,Yanan Sun,Qing Ye,Wentao Feng,Jiancheng Lv
出处
期刊:Information Sciences [Elsevier]
卷期号:679: 121005-121005 被引量:2
标识
DOI:10.1016/j.ins.2024.121005
摘要

Multimodal fusion, a machine learning technique, significantly enhances decision-making by leveraging complementary information extracted from different data modalities. The success of multimodal fusion relies heavily on the design of the fusion scheme. However, this process traditionally depends on manual expertise and exhaustive trials. To tackle this challenge, researchers have undertaken studies on DARTS-based Neural Architecture Search (NAS) variants to automate the search of fusion schemes. In this paper, we present theoretical and empirical evidence that highlights the presence of catastrophic search bias in DARTS-based multimodal fusion methods. This bias traps the search into a deceptive optimal childnet, rendering the entire search process ineffective. To circumvent this phenomenon, we introduce a novel NAS framework for multimodal fusion, featuring a robust search strategy and a meticulously designed multi-scale fusion search space. Significantly, the proposed framework is capable of capturing modality-specific information across multiple scales while achieving an automatic balance between intra-modal and inter-modal information. We conduct extensive experiments on three commonly used multimodal classification tasks from different domains and compare the proposed framework against state-of-the-art approaches. The experimental results demonstrate the superior robustness and high efficiency of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老福贵儿应助李土豆采纳,获得10
1秒前
1秒前
2秒前
謃河鷺起完成签到,获得积分10
2秒前
sjk完成签到,获得积分10
2秒前
领导范儿应助雨碎寒江采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
ilihe应助科研通管家采纳,获得30
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
liao应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
re应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
852应助山槐采纳,获得10
3秒前
liao应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
spc68应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
酷酷紫易应助科研通管家采纳,获得10
3秒前
小圆潇应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
1101592875应助科研通管家采纳,获得10
3秒前
开朗西装完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得50
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
4秒前
ilihe应助科研通管家采纳,获得20
4秒前
Tam应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
云梦江海应助科研通管家采纳,获得10
4秒前
天真的雨完成签到,获得积分10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Chemistry and Biochemistry: Research Progress Vol. 7 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684019
求助须知:如何正确求助?哪些是违规求助? 5034811
关于积分的说明 15183309
捐赠科研通 4843392
什么是DOI,文献DOI怎么找? 2596672
邀请新用户注册赠送积分活动 1549384
关于科研通互助平台的介绍 1507854