Ensemble learning method for classification: Integrating data envelopment analysis with machine learning

计算机科学 集成学习 人工智能 机器学习 数据包络分析 模式识别(心理学) 数学 统计
作者
Qingxian An,Siwei Huang,Yuxuan Han,You Zhu
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:169: 106739-106739
标识
DOI:10.1016/j.cor.2024.106739
摘要

In classification tasks with large sample sets, the use of a single classifier carries the risk of overfitting. To overcome this issue, an ensemble of classifier models has often been shown to outperform the use of a single "best" model. Given the rich variety of classifier models available, the selection of the high-efficiency classifiers for a given task dataset remains an urgent challenge. However, most of the previous classifier selection methods only focus on the measurement of classification output performance without considering the computational cost. This paper proposes a new ensemble learning method to improve the classification quality for big datasets by using data envelopment analysis. It contains the following two stages: classifier selection and classifier combination. In the first stage, the commonly used classifiers are evaluated on the basis of their performance on resource consumption and classification output performance using the range directional model (RDM); then, the most efficient classifiers are selected. In the second stage, the classifier confusion matrix is evaluated using the data envelopment analysis (DEA) cross-efficiency model. Then, the weight for the classifier combination is determined to ensure that classifiers with higher performance have greater weights based on the cross-efficiency values. Experimental results demonstrate the superiority of the cross-efficiency model over the BCC model and the benchmark voting method in model ensemble. Furthermore, our method has been shown to save more computational resources and yields better results than existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的道消完成签到,获得积分10
刚刚
ladette发布了新的文献求助10
1秒前
le完成签到 ,获得积分10
2秒前
Ying完成签到,获得积分10
2秒前
2秒前
4秒前
hahaha完成签到,获得积分10
5秒前
5秒前
灵舒完成签到,获得积分10
7秒前
大方的火龙果完成签到 ,获得积分10
8秒前
阿姊完成签到 ,获得积分10
8秒前
强壮的人发布了新的文献求助10
9秒前
xiaobai发布了新的文献求助10
9秒前
10秒前
Kikisong完成签到,获得积分10
10秒前
黑白完成签到 ,获得积分10
11秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得30
12秒前
12秒前
12秒前
化学小学生完成签到,获得积分10
12秒前
迷路的沧海完成签到,获得积分10
12秒前
HEIKU应助科研通管家采纳,获得10
12秒前
iNk应助科研通管家采纳,获得10
12秒前
iNk应助科研通管家采纳,获得10
13秒前
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
guilin应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得30
13秒前
13秒前
HEIKU应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
虾502发布了新的文献求助30
15秒前
如故完成签到,获得积分10
17秒前
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162599
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900687
捐赠科研通 2473052
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631452
版权声明 602175