重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Ensemble learning method for classification: Integrating data envelopment analysis with machine learning

计算机科学 集成学习 人工智能 机器学习 数据包络分析 模式识别(心理学) 数学 统计
作者
Qingxian An,Siwei Huang,Yuxuan Han,You Zhu
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:169: 106739-106739
标识
DOI:10.1016/j.cor.2024.106739
摘要

In classification tasks with large sample sets, the use of a single classifier carries the risk of overfitting. To overcome this issue, an ensemble of classifier models has often been shown to outperform the use of a single "best" model. Given the rich variety of classifier models available, the selection of the high-efficiency classifiers for a given task dataset remains an urgent challenge. However, most of the previous classifier selection methods only focus on the measurement of classification output performance without considering the computational cost. This paper proposes a new ensemble learning method to improve the classification quality for big datasets by using data envelopment analysis. It contains the following two stages: classifier selection and classifier combination. In the first stage, the commonly used classifiers are evaluated on the basis of their performance on resource consumption and classification output performance using the range directional model (RDM); then, the most efficient classifiers are selected. In the second stage, the classifier confusion matrix is evaluated using the data envelopment analysis (DEA) cross-efficiency model. Then, the weight for the classifier combination is determined to ensure that classifiers with higher performance have greater weights based on the cross-efficiency values. Experimental results demonstrate the superiority of the cross-efficiency model over the BCC model and the benchmark voting method in model ensemble. Furthermore, our method has been shown to save more computational resources and yields better results than existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心无色关注了科研通微信公众号
刚刚
AAA发布了新的文献求助20
刚刚
简默完成签到,获得积分10
刚刚
WendyWen发布了新的文献求助100
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
pancake发布了新的文献求助30
1秒前
1秒前
jackie给jackie的求助进行了留言
2秒前
复杂冰淇淋完成签到,获得积分20
2秒前
2秒前
自然月亮完成签到 ,获得积分10
3秒前
myp完成签到,获得积分10
4秒前
4秒前
悲凉的孤萍完成签到,获得积分10
4秒前
脑洞疼应助三年H采纳,获得10
4秒前
Zzhn完成签到,获得积分10
5秒前
Yiran发布了新的文献求助10
5秒前
MM发布了新的文献求助10
5秒前
6秒前
6秒前
遇见发布了新的文献求助10
6秒前
麻花完成签到,获得积分10
6秒前
李健应助复杂冰淇淋采纳,获得10
7秒前
失眠凡英完成签到 ,获得积分10
7秒前
tt发布了新的文献求助10
7秒前
chenying发布了新的文献求助10
7秒前
爆米花应助安详的语蕊采纳,获得10
8秒前
hy发布了新的文献求助200
8秒前
avalanche应助io采纳,获得200
8秒前
科研小天才完成签到,获得积分10
8秒前
然而。完成签到,获得积分10
8秒前
小二郎应助蓝莓采纳,获得10
8秒前
8秒前
Jasper应助CBWKEYANTONG123采纳,获得10
9秒前
赘婿应助脑袋尖尖的采纳,获得10
9秒前
南枳完成签到,获得积分10
9秒前
搜集达人应助昏睡的鑫磊采纳,获得10
10秒前
脑洞疼应助咖啡不加糖采纳,获得10
10秒前
ok完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516