Ensemble learning method for classification: Integrating data envelopment analysis with machine learning

计算机科学 集成学习 人工智能 机器学习 数据包络分析 模式识别(心理学) 数学 统计
作者
Qingxian An,Siwei Huang,Yuxuan Han,You Zhu
出处
期刊:Computers & Operations Research [Elsevier BV]
卷期号:169: 106739-106739
标识
DOI:10.1016/j.cor.2024.106739
摘要

In classification tasks with large sample sets, the use of a single classifier carries the risk of overfitting. To overcome this issue, an ensemble of classifier models has often been shown to outperform the use of a single "best" model. Given the rich variety of classifier models available, the selection of the high-efficiency classifiers for a given task dataset remains an urgent challenge. However, most of the previous classifier selection methods only focus on the measurement of classification output performance without considering the computational cost. This paper proposes a new ensemble learning method to improve the classification quality for big datasets by using data envelopment analysis. It contains the following two stages: classifier selection and classifier combination. In the first stage, the commonly used classifiers are evaluated on the basis of their performance on resource consumption and classification output performance using the range directional model (RDM); then, the most efficient classifiers are selected. In the second stage, the classifier confusion matrix is evaluated using the data envelopment analysis (DEA) cross-efficiency model. Then, the weight for the classifier combination is determined to ensure that classifiers with higher performance have greater weights based on the cross-efficiency values. Experimental results demonstrate the superiority of the cross-efficiency model over the BCC model and the benchmark voting method in model ensemble. Furthermore, our method has been shown to save more computational resources and yields better results than existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Crystal发布了新的文献求助30
刚刚
量子星尘发布了新的文献求助10
1秒前
J卡卡K发布了新的文献求助10
1秒前
1秒前
学fei了吗完成签到,获得积分10
1秒前
1秒前
SS发布了新的文献求助10
2秒前
Belinda发布了新的文献求助10
2秒前
ZYW完成签到,获得积分10
2秒前
khada发布了新的文献求助20
3秒前
kRAY发布了新的文献求助10
3秒前
4秒前
香蕉冬云发布了新的文献求助10
4秒前
5秒前
研友_VZG7GZ应助XX采纳,获得10
5秒前
5秒前
6秒前
丽丽的账号完成签到,获得积分10
6秒前
传奇3应助zwy109采纳,获得10
6秒前
左飞扬发布了新的文献求助10
6秒前
CodeCraft应助刘月茹采纳,获得10
6秒前
7秒前
7秒前
Orange应助糟糕的大白菜采纳,获得30
7秒前
7秒前
myth发布了新的文献求助10
8秒前
9秒前
9秒前
刻苦的三问完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
OCTOPUS发布了新的文献求助10
10秒前
undeadgo发布了新的文献求助10
10秒前
liu发布了新的文献求助10
10秒前
鹊起惊梦发布了新的文献求助10
10秒前
Ryang完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371