Communication-efficient federated learning via personalized filter pruning

修剪 计算机科学 滤波器(信号处理) 人工智能 机器学习 计算机视觉 生物 农学
作者
Qi Min,Fei Luo,Wenbo Dong,Chunhua Gu,Weichao Ding
出处
期刊:Information Sciences [Elsevier BV]
卷期号:678: 121030-121030 被引量:2
标识
DOI:10.1016/j.ins.2024.121030
摘要

With the popularity of mobile devices and the continuous growth of interactive data, FL (Federated Learning) has gradually become an effective mean to address the problems of privacy leakage and data silos. However, due to the heterogeneity and imbalance of participants, FL faces many challenges, including model accuracy, security, heterogeneous devices and data, privacy preservation, as well as communication overhead and efficiency. To address challenges such as high communication overhead and low model accuracy in FL, we innovatively introduce model pruning into the FL framework and propose a personalized filter pruning-based FL method named PF2 Learning (Personalized Filter Pruning Federal Learning). This method achieves reasonable filter pruning for all local models by performing personalized pruning on each local model. Specifically, on the device side, we use a pruning strategy based on the norm geometric median, which also considers the order dependence between adjacent layers and evaluates the contribution of filters involved in pruning to optimize the pruning for local models at a unified pruning rate. On the server side, we calculate the unified pruning ratio of the model based on the contribution of participants' model filters and training errors to maintain the consistency of the participants' model structures. To validate the effectiveness of our proposed method, we conducted federated image classification tasks on ResNet-18, VGG-11, DenseNet-121, and InceptionNet-V1 models using CIFAR-10, FEMNIST, and ImageNet datasets. The experimental results show that PF2 Learning outperforms most FL pruning methods and exhibits better model performance and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
豹子头零充完成签到,获得积分10
1秒前
开朗眼神发布了新的文献求助10
1秒前
浮游应助研友_LMBAXn采纳,获得10
1秒前
zzz完成签到,获得积分20
2秒前
善学以致用应助赵梦娜采纳,获得10
2秒前
郁盈完成签到,获得积分10
2秒前
如意要科研关注了科研通微信公众号
3秒前
11完成签到 ,获得积分10
5秒前
开朗雪糕发布了新的文献求助10
6秒前
开朗眼神完成签到,获得积分10
6秒前
善学以致用应助噼里啪啦采纳,获得10
6秒前
科研通AI6应助ccc采纳,获得10
7秒前
7秒前
科研通AI5应助nanxing采纳,获得10
7秒前
Flipped发布了新的文献求助150
9秒前
打打应助月儿采纳,获得10
9秒前
lins发布了新的文献求助20
9秒前
10秒前
冷艳的寒天完成签到,获得积分10
10秒前
舒适行云发布了新的文献求助10
10秒前
Doc.Wang完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
勤奋的水杯完成签到,获得积分10
14秒前
1000x发布了新的文献求助30
14秒前
英姑应助Doc.Wang采纳,获得10
15秒前
15秒前
陈熙发布了新的文献求助10
15秒前
Ouyang完成签到 ,获得积分10
16秒前
16秒前
陀思妥耶夫斯基完成签到 ,获得积分10
16秒前
17秒前
17秒前
xixili完成签到,获得积分10
17秒前
17秒前
小秦完成签到,获得积分10
18秒前
something完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028518
求助须知:如何正确求助?哪些是违规求助? 4264413
关于积分的说明 13293536
捐赠科研通 4072477
什么是DOI,文献DOI怎么找? 2227478
邀请新用户注册赠送积分活动 1235941
关于科研通互助平台的介绍 1160226