已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Communication-efficient federated learning via personalized filter pruning

修剪 计算机科学 滤波器(信号处理) 人工智能 机器学习 计算机视觉 生物 农学
作者
Qi Min,Fei Luo,Wenbo Dong,Chunhua Gu,Weichao Ding
出处
期刊:Information Sciences [Elsevier]
卷期号:678: 121030-121030 被引量:1
标识
DOI:10.1016/j.ins.2024.121030
摘要

With the popularity of mobile devices and the continuous growth of interactive data, FL (Federated Learning) has gradually become an effective mean to address the problems of privacy leakage and data silos. However, due to the heterogeneity and imbalance of participants, FL faces many challenges, including model accuracy, security, heterogeneous devices and data, privacy preservation, as well as communication overhead and efficiency. To address challenges such as high communication overhead and low model accuracy in FL, we innovatively introduce model pruning into the FL framework and propose a personalized filter pruning-based FL method named PF2 Learning (Personalized Filter Pruning Federal Learning). This method achieves reasonable filter pruning for all local models by performing personalized pruning on each local model. Specifically, on the device side, we use a pruning strategy based on the norm geometric median, which also considers the order dependence between adjacent layers and evaluates the contribution of filters involved in pruning to optimize the pruning for local models at a unified pruning rate. On the server side, we calculate the unified pruning ratio of the model based on the contribution of participants' model filters and training errors to maintain the consistency of the participants' model structures. To validate the effectiveness of our proposed method, we conducted federated image classification tasks on ResNet-18, VGG-11, DenseNet-121, and InceptionNet-V1 models using CIFAR-10, FEMNIST, and ImageNet datasets. The experimental results show that PF2 Learning outperforms most FL pruning methods and exhibits better model performance and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pweni应助Cora采纳,获得30
刚刚
sj2025发布了新的文献求助30
1秒前
不将就完成签到,获得积分10
1秒前
bicargo发布了新的文献求助10
1秒前
打水不打饭完成签到 ,获得积分10
2秒前
Xiaoning发布了新的文献求助10
3秒前
4秒前
gr8zhuzc发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
13秒前
三维码发布了新的文献求助10
14秒前
15秒前
wfl完成签到,获得积分10
16秒前
熊有鹏发布了新的文献求助10
16秒前
雪白的听寒完成签到 ,获得积分10
17秒前
俊逸鹏笑完成签到,获得积分10
17秒前
酸色黑樱桃完成签到,获得积分10
18秒前
请叫我风吹麦浪应助ggn采纳,获得10
19秒前
xishanmeng完成签到,获得积分10
20秒前
fancy完成签到 ,获得积分10
20秒前
科研小裴完成签到 ,获得积分10
22秒前
安然发布了新的文献求助10
22秒前
wanci应助zyh采纳,获得10
22秒前
追寻妖妖完成签到,获得积分20
23秒前
23秒前
Lucas应助hfguwn采纳,获得10
23秒前
25秒前
答案说明所有关注了科研通微信公众号
27秒前
冷艳的立果完成签到 ,获得积分10
27秒前
28秒前
大模型应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
思源应助科研通管家采纳,获得10
28秒前
28秒前
浦肯野应助科研通管家采纳,获得20
29秒前
共享精神应助科研通管家采纳,获得50
29秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484112
求助须知:如何正确求助?哪些是违规求助? 3073192
关于积分的说明 9129970
捐赠科研通 2764864
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702131
科研通“疑难数据库(出版商)”最低求助积分说明 701057