Communication-efficient federated learning via personalized filter pruning

修剪 计算机科学 滤波器(信号处理) 人工智能 机器学习 计算机视觉 生物 农学
作者
Qi Min,Fei Luo,Wenbo Dong,Chunhua Gu,Weichao Ding
出处
期刊:Information Sciences [Elsevier]
卷期号:678: 121030-121030 被引量:2
标识
DOI:10.1016/j.ins.2024.121030
摘要

With the popularity of mobile devices and the continuous growth of interactive data, FL (Federated Learning) has gradually become an effective mean to address the problems of privacy leakage and data silos. However, due to the heterogeneity and imbalance of participants, FL faces many challenges, including model accuracy, security, heterogeneous devices and data, privacy preservation, as well as communication overhead and efficiency. To address challenges such as high communication overhead and low model accuracy in FL, we innovatively introduce model pruning into the FL framework and propose a personalized filter pruning-based FL method named PF2 Learning (Personalized Filter Pruning Federal Learning). This method achieves reasonable filter pruning for all local models by performing personalized pruning on each local model. Specifically, on the device side, we use a pruning strategy based on the norm geometric median, which also considers the order dependence between adjacent layers and evaluates the contribution of filters involved in pruning to optimize the pruning for local models at a unified pruning rate. On the server side, we calculate the unified pruning ratio of the model based on the contribution of participants' model filters and training errors to maintain the consistency of the participants' model structures. To validate the effectiveness of our proposed method, we conducted federated image classification tasks on ResNet-18, VGG-11, DenseNet-121, and InceptionNet-V1 models using CIFAR-10, FEMNIST, and ImageNet datasets. The experimental results show that PF2 Learning outperforms most FL pruning methods and exhibits better model performance and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shelly0621发布了新的文献求助10
刚刚
刚刚
孙畅完成签到 ,获得积分10
1秒前
陈龙发布了新的文献求助10
1秒前
阔达芾发布了新的文献求助20
1秒前
沉静道罡完成签到,获得积分10
3秒前
5秒前
5秒前
xuxuwang1发布了新的文献求助10
5秒前
6秒前
斯文败类应助sunoopp采纳,获得10
9秒前
9秒前
10秒前
10秒前
善学以致用应助小王子采纳,获得10
10秒前
yznfly应助科研通管家采纳,获得20
10秒前
yznfly应助科研通管家采纳,获得20
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
英姑应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
yznfly应助科研通管家采纳,获得50
11秒前
yznfly应助科研通管家采纳,获得50
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
orixero应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737686
求助须知:如何正确求助?哪些是违规求助? 5373939
关于积分的说明 15336077
捐赠科研通 4881050
什么是DOI,文献DOI怎么找? 2623314
邀请新用户注册赠送积分活动 1572041
关于科研通互助平台的介绍 1528887