Communication-efficient federated learning via personalized filter pruning

修剪 计算机科学 滤波器(信号处理) 人工智能 机器学习 计算机视觉 生物 农学
作者
Qi Min,Fei Luo,Wenbo Dong,Chunhua Gu,Weichao Ding
出处
期刊:Information Sciences [Elsevier]
卷期号:678: 121030-121030 被引量:2
标识
DOI:10.1016/j.ins.2024.121030
摘要

With the popularity of mobile devices and the continuous growth of interactive data, FL (Federated Learning) has gradually become an effective mean to address the problems of privacy leakage and data silos. However, due to the heterogeneity and imbalance of participants, FL faces many challenges, including model accuracy, security, heterogeneous devices and data, privacy preservation, as well as communication overhead and efficiency. To address challenges such as high communication overhead and low model accuracy in FL, we innovatively introduce model pruning into the FL framework and propose a personalized filter pruning-based FL method named PF2 Learning (Personalized Filter Pruning Federal Learning). This method achieves reasonable filter pruning for all local models by performing personalized pruning on each local model. Specifically, on the device side, we use a pruning strategy based on the norm geometric median, which also considers the order dependence between adjacent layers and evaluates the contribution of filters involved in pruning to optimize the pruning for local models at a unified pruning rate. On the server side, we calculate the unified pruning ratio of the model based on the contribution of participants' model filters and training errors to maintain the consistency of the participants' model structures. To validate the effectiveness of our proposed method, we conducted federated image classification tasks on ResNet-18, VGG-11, DenseNet-121, and InceptionNet-V1 models using CIFAR-10, FEMNIST, and ImageNet datasets. The experimental results show that PF2 Learning outperforms most FL pruning methods and exhibits better model performance and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光给11111的求助进行了留言
刚刚
量子星尘发布了新的文献求助10
刚刚
最优解完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
小马甲应助AAA采纳,获得10
2秒前
背后幻姬发布了新的文献求助10
3秒前
3秒前
QWQ完成签到,获得积分10
3秒前
4秒前
自信尔冬完成签到,获得积分10
5秒前
5秒前
shuo完成签到,获得积分10
6秒前
6秒前
科目三应助lingmuhuahua采纳,获得10
7秒前
wzy发布了新的文献求助10
7秒前
7秒前
7秒前
FashionBoy应助黑猫黑猫采纳,获得10
8秒前
嘟嘟发布了新的文献求助10
8秒前
快乐滑板应助沉静的曼荷采纳,获得10
9秒前
科研通AI2S应助沉静的曼荷采纳,获得10
9秒前
9秒前
9秒前
9秒前
芽芽发布了新的文献求助10
9秒前
彭佳乐发布了新的文献求助10
9秒前
往哪跑发布了新的文献求助10
10秒前
10秒前
11秒前
大个应助lucky采纳,获得10
11秒前
12秒前
所所应助小池采纳,获得10
12秒前
12秒前
可爱的函函应助熏同学采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
BowieHuang应助憨憨的小于采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760069
求助须知:如何正确求助?哪些是违规求助? 5523381
关于积分的说明 15396422
捐赠科研通 4896997
什么是DOI,文献DOI怎么找? 2634002
邀请新用户注册赠送积分活动 1582062
关于科研通互助平台的介绍 1537519