Synergy of structural engineering and VO2 self-transformation enables ultra-high areal capacity cathodes for zinc-ion batteries

阴极 材料科学 离子 转化(遗传学) 光电子学 纳米技术 工程物理 冶金 电气工程 化学 工程类 生物化学 有机化学 基因
作者
Weiyi Sun,Jiakai Cao,Sa Ra Han,Huifa Shi,Guixia Lu,Xiaoyang Zhu,Lei Xu,Zahid Ali Ghazi,Dinghui Fan,Daliang Han,Hongbo Lan,S.T. Niu
出处
期刊:Carbon [Elsevier BV]
卷期号:226: 119241-119241 被引量:5
标识
DOI:10.1016/j.carbon.2024.119241
摘要

The development of cathodes with high areal capacities is a prerequisite for realizing the practical application of zinc-ion batteries (ZIBs). However, the slow ion (de)intercalation kinetics and the highly tortuous ion transport channels in the traditionally blade-coated electrodes limit the practical areal capacities of the ZIB cathodes below 3 mAh cm-2. In this work, multi-stage pore structures, including through-holes perpendicular to the electrode and submicron-scale channels along the radial direction of the printed filaments, are obtained through polyvinylidene difluoride (PVDF) phase separation assisted 3D printing procedure. In this novel electrode material, the porous network enables fast electron/ion transport and improves the accessibility of active materials for thick electrodes with high active material loadings. More importantly, a phase self-transformation of VO2 to a high oxidation state of V5O12∙6H2O is achieved by regulating the charging voltage, which significantly enhances the zinc storage capacity and provides smoother channels for fast ion (de)intercalation. With these unique features, the 3D printed VO2 cathode with a mass loading of 8.9 mg cm-2 demonstrates a high specific capacity of 478.1 mAh g-1 at 1 A g-1 and a stable life cycle for 1000 cycles at 4 A g-1. When the mass loading is increased to 29.6 mg cm-2, the electrode is still able to deliver an ultra-high areal capacity of 16.8 mAh cm-2. The strategies adopted in this work greatly boost up the performance of VO2 cathodes, especially the high areal capacity, by combining structural engineering and material activity regulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助智慧吗喽采纳,获得10
1秒前
2秒前
3秒前
酷酷发布了新的文献求助10
3秒前
3秒前
啦啦啦发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
难过千易完成签到,获得积分10
5秒前
6秒前
施白玉发布了新的文献求助10
6秒前
现代白玉完成签到,获得积分10
6秒前
6秒前
8秒前
orixero应助Zesong采纳,获得10
8秒前
8秒前
现代白玉发布了新的文献求助10
9秒前
一修发布了新的文献求助10
9秒前
樱悼柳雪发布了新的文献求助10
9秒前
倒头就睡发布了新的文献求助10
9秒前
啦啦啦完成签到,获得积分10
9秒前
jun完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
照照发布了新的文献求助10
10秒前
望北楼主发布了新的文献求助10
10秒前
GOW发布了新的文献求助10
11秒前
一万朵蝴蝶完成签到,获得积分10
11秒前
eyo发布了新的文献求助10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974797
求助须知:如何正确求助?哪些是违规求助? 3519250
关于积分的说明 11197623
捐赠科研通 3255405
什么是DOI,文献DOI怎么找? 1797769
邀请新用户注册赠送积分活动 877156
科研通“疑难数据库(出版商)”最低求助积分说明 806202