An intelligent airflow perception model for metal mines based on CNN-LSTM architecture

建筑 气流 计算机科学 感知 人工智能 工程类 历史 心理学 机械工程 神经科学 考古
作者
Wenxuan Tang,Qilong Zhang,Yin Chen,Xin Liu,Haining Wang,Wei Huang
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:187: 1234-1247 被引量:2
标识
DOI:10.1016/j.psep.2024.05.044
摘要

In view of the harsh underground working environment and difficulties of airflow monitoring sensors placement, implementing an intelligent ventilation strategy is crucial for ensuring ventilation safety during mining process. The key issue lies in obtaining global real-time airflow parameters for ventilation safety and intelligent control. Thus, we propose an intelligent perception approach based on artificial intelligence (AI) method for acquiring airflow parameters, which operates by leveraging partial airflow data from specific monitoring points to predict airflow at undisclosed locations. Initially, this approach is facilitated by the training of an AI database through numerical simulations of ventilation networks. Subsequently, an intelligent airflow perception model is constructed, incorporating convolution neural network (CNN), long short-term memory (LSTM), and hybrid CNN-LSTM architectures. Through iterative updates and enhancements, these models demonstrate average deviations between predicted and actual airflow parameters of less than 5% in both simulated scenarios and empirical applications. Furthermore, in the case study, the CNN-LSTM architecture model exhibits superior performance for intelligent airflow perception. This architecture combing with airflow monitoring system, and utilizing partial real-time data inputs to obtain perception point outputs, can effectively enhance employee productivity, reduce energy consumption, and prevent resource wastage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaizhai完成签到,获得积分10
刚刚
xin发布了新的文献求助10
刚刚
刚刚
刚刚
lalala发布了新的文献求助10
刚刚
浮游应助tt采纳,获得10
刚刚
1秒前
无极微光应助HJJHJH采纳,获得20
1秒前
不倦应助HJJHJH采纳,获得10
1秒前
1秒前
orixero应助刀英俊采纳,获得10
1秒前
huang完成签到,获得积分10
1秒前
hoshi发布了新的文献求助10
2秒前
2秒前
2秒前
六宫粉黛发布了新的文献求助10
3秒前
3秒前
丘比特应助xiamu采纳,获得10
3秒前
3秒前
华仔应助Zz采纳,获得10
3秒前
3秒前
榴莲姑娘发布了新的文献求助10
4秒前
SciGPT应助光亮的万天采纳,获得10
4秒前
5秒前
5秒前
可爱的函函应助简单平蓝采纳,获得10
5秒前
5秒前
5秒前
fourfive发布了新的文献求助10
6秒前
饭饭发布了新的文献求助10
6秒前
槑槑发布了新的文献求助10
6秒前
6秒前
7秒前
yznfly应助勤劳沛柔采纳,获得50
7秒前
7秒前
李健的粉丝团团长应助dj采纳,获得10
7秒前
赵亚南发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
共享精神应助勤奋的静竹采纳,获得10
8秒前
二小发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526018
求助须知:如何正确求助?哪些是违规求助? 4616198
关于积分的说明 14552293
捐赠科研通 4554419
什么是DOI,文献DOI怎么找? 2495890
邀请新用户注册赠送积分活动 1476218
关于科研通互助平台的介绍 1447892