An intelligent airflow perception model for metal mines based on CNN-LSTM architecture

建筑 气流 计算机科学 感知 人工智能 工程类 历史 心理学 机械工程 神经科学 考古
作者
Wenxuan Tang,Qilong Zhang,Yin Chen,Xin Liu,Haining Wang,Wei Huang
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:187: 1234-1247 被引量:2
标识
DOI:10.1016/j.psep.2024.05.044
摘要

In view of the harsh underground working environment and difficulties of airflow monitoring sensors placement, implementing an intelligent ventilation strategy is crucial for ensuring ventilation safety during mining process. The key issue lies in obtaining global real-time airflow parameters for ventilation safety and intelligent control. Thus, we propose an intelligent perception approach based on artificial intelligence (AI) method for acquiring airflow parameters, which operates by leveraging partial airflow data from specific monitoring points to predict airflow at undisclosed locations. Initially, this approach is facilitated by the training of an AI database through numerical simulations of ventilation networks. Subsequently, an intelligent airflow perception model is constructed, incorporating convolution neural network (CNN), long short-term memory (LSTM), and hybrid CNN-LSTM architectures. Through iterative updates and enhancements, these models demonstrate average deviations between predicted and actual airflow parameters of less than 5% in both simulated scenarios and empirical applications. Furthermore, in the case study, the CNN-LSTM architecture model exhibits superior performance for intelligent airflow perception. This architecture combing with airflow monitoring system, and utilizing partial real-time data inputs to obtain perception point outputs, can effectively enhance employee productivity, reduce energy consumption, and prevent resource wastage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴滴滴发布了新的文献求助10
1秒前
橙子应助Bismarck采纳,获得10
2秒前
3秒前
无情白羊发布了新的文献求助10
4秒前
zwy发布了新的文献求助10
4秒前
搜集达人应助lililili采纳,获得10
5秒前
Wen完成签到,获得积分10
5秒前
5秒前
bzc完成签到,获得积分10
6秒前
wan完成签到,获得积分10
7秒前
大个应助lyyy采纳,获得10
7秒前
bkagyin应助stonedream采纳,获得10
7秒前
zhouzheyu完成签到,获得积分10
7秒前
李浩然完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
腼腆的千雁完成签到,获得积分10
9秒前
9秒前
10秒前
生菜完成签到,获得积分20
10秒前
mouxq发布了新的文献求助10
11秒前
搜集达人应助lelebuaichi采纳,获得10
12秒前
典雅煎蛋完成签到,获得积分10
13秒前
迷路竹完成签到,获得积分10
14秒前
16秒前
悲凉的大有完成签到,获得积分10
16秒前
浮游应助小黑采纳,获得10
16秒前
17秒前
17秒前
倪妮发布了新的文献求助10
17秒前
明镜完成签到,获得积分10
18秒前
碧蓝的自行车完成签到,获得积分10
18秒前
18秒前
19秒前
哈哈哈发布了新的文献求助100
19秒前
19秒前
8888拉完成签到,获得积分10
20秒前
21秒前
在水一方应助旺仔秋秋糖采纳,获得10
21秒前
lililili发布了新的文献求助10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142850
求助须知:如何正确求助?哪些是违规求助? 4340997
关于积分的说明 13519072
捐赠科研通 4181180
什么是DOI,文献DOI怎么找? 2292757
邀请新用户注册赠送积分活动 1293411
关于科研通互助平台的介绍 1235982