An intelligent airflow perception model for metal mines based on CNN-LSTM architecture

建筑 气流 计算机科学 感知 人工智能 工程类 历史 心理学 机械工程 神经科学 考古
作者
Wenxuan Tang,Qilong Zhang,Yin Chen,Xin Liu,Haining Wang,Wei Huang
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:187: 1234-1247 被引量:2
标识
DOI:10.1016/j.psep.2024.05.044
摘要

In view of the harsh underground working environment and difficulties of airflow monitoring sensors placement, implementing an intelligent ventilation strategy is crucial for ensuring ventilation safety during mining process. The key issue lies in obtaining global real-time airflow parameters for ventilation safety and intelligent control. Thus, we propose an intelligent perception approach based on artificial intelligence (AI) method for acquiring airflow parameters, which operates by leveraging partial airflow data from specific monitoring points to predict airflow at undisclosed locations. Initially, this approach is facilitated by the training of an AI database through numerical simulations of ventilation networks. Subsequently, an intelligent airflow perception model is constructed, incorporating convolution neural network (CNN), long short-term memory (LSTM), and hybrid CNN-LSTM architectures. Through iterative updates and enhancements, these models demonstrate average deviations between predicted and actual airflow parameters of less than 5% in both simulated scenarios and empirical applications. Furthermore, in the case study, the CNN-LSTM architecture model exhibits superior performance for intelligent airflow perception. This architecture combing with airflow monitoring system, and utilizing partial real-time data inputs to obtain perception point outputs, can effectively enhance employee productivity, reduce energy consumption, and prevent resource wastage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助48662采纳,获得10
刚刚
CodeCraft应助单纯宇琴采纳,获得10
刚刚
fjmelite完成签到 ,获得积分10
1秒前
幽默的棒球完成签到,获得积分10
1秒前
1秒前
JamesPei应助对苏采纳,获得10
2秒前
2秒前
CClaire完成签到,获得积分10
2秒前
科研通AI2S应助两碗牛又面采纳,获得10
3秒前
刘浩发布了新的文献求助10
3秒前
3秒前
小叶子完成签到,获得积分10
4秒前
微笑的曼容完成签到,获得积分10
4秒前
完美世界应助Raven采纳,获得10
5秒前
5秒前
Lizhuzhu发布了新的文献求助10
5秒前
南山完成签到,获得积分10
5秒前
xuxingxing完成签到,获得积分10
6秒前
6秒前
1816013153发布了新的文献求助10
6秒前
7秒前
科研通AI6应助梁_采纳,获得10
7秒前
jy发布了新的文献求助10
8秒前
君子扑火完成签到,获得积分10
8秒前
qqq发布了新的文献求助20
9秒前
qindanyan发布了新的文献求助10
9秒前
9秒前
WhiteCaramel完成签到 ,获得积分10
9秒前
DamienC完成签到,获得积分10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
槑槑发布了新的文献求助10
10秒前
天天快乐应助小陶采纳,获得10
11秒前
xuxingxing发布了新的文献求助10
11秒前
眼睛大凤发布了新的文献求助10
12秒前
Alk完成签到,获得积分10
13秒前
13秒前
CodeCraft应助柒月采纳,获得10
14秒前
zhanghandi完成签到,获得积分10
14秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580415
求助须知:如何正确求助?哪些是违规求助? 4665209
关于积分的说明 14755310
捐赠科研通 4606804
什么是DOI,文献DOI怎么找? 2527958
邀请新用户注册赠送积分活动 1497277
关于科研通互助平台的介绍 1466331