An intelligent airflow perception model for metal mines based on CNN-LSTM architecture

建筑 气流 计算机科学 感知 人工智能 工程类 历史 心理学 机械工程 神经科学 考古
作者
Wenxuan Tang,Qilong Zhang,Yin Chen,Xin Liu,Haining Wang,Wei Huang
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:187: 1234-1247 被引量:2
标识
DOI:10.1016/j.psep.2024.05.044
摘要

In view of the harsh underground working environment and difficulties of airflow monitoring sensors placement, implementing an intelligent ventilation strategy is crucial for ensuring ventilation safety during mining process. The key issue lies in obtaining global real-time airflow parameters for ventilation safety and intelligent control. Thus, we propose an intelligent perception approach based on artificial intelligence (AI) method for acquiring airflow parameters, which operates by leveraging partial airflow data from specific monitoring points to predict airflow at undisclosed locations. Initially, this approach is facilitated by the training of an AI database through numerical simulations of ventilation networks. Subsequently, an intelligent airflow perception model is constructed, incorporating convolution neural network (CNN), long short-term memory (LSTM), and hybrid CNN-LSTM architectures. Through iterative updates and enhancements, these models demonstrate average deviations between predicted and actual airflow parameters of less than 5% in both simulated scenarios and empirical applications. Furthermore, in the case study, the CNN-LSTM architecture model exhibits superior performance for intelligent airflow perception. This architecture combing with airflow monitoring system, and utilizing partial real-time data inputs to obtain perception point outputs, can effectively enhance employee productivity, reduce energy consumption, and prevent resource wastage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涵泽发布了新的文献求助10
刚刚
1秒前
柚鹿完成签到,获得积分20
1秒前
1秒前
领导范儿应助kkPi采纳,获得10
1秒前
知秋发布了新的文献求助10
1秒前
鲤跃完成签到,获得积分10
1秒前
2秒前
一亩蔬菜完成签到,获得积分10
2秒前
3秒前
3秒前
符从丹完成签到,获得积分10
3秒前
pluto应助wenwenya采纳,获得10
4秒前
番薯鱼完成签到,获得积分10
4秒前
zzz完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Zx_1993应助OYZY采纳,获得20
6秒前
是晓宇啊发布了新的文献求助10
6秒前
6秒前
JamesPei应助辞羽采纳,获得10
6秒前
小蘑菇应助成就含玉采纳,获得10
7秒前
乜乜关注了科研通微信公众号
7秒前
勤劳蚂蚁发布了新的文献求助20
7秒前
无他完成签到 ,获得积分20
8秒前
今后应助123采纳,获得10
8秒前
张景灿完成签到,获得积分10
8秒前
wenge发布了新的文献求助10
8秒前
8秒前
Joker发布了新的文献求助10
9秒前
9秒前
英姑应助麻喽采纳,获得10
9秒前
领导范儿应助阿杜阿杜采纳,获得10
9秒前
9秒前
叶宇豪发布了新的文献求助10
10秒前
赘婿应助Dreamhappy采纳,获得10
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593772
求助须知:如何正确求助?哪些是违规求助? 4679592
关于积分的说明 14810710
捐赠科研通 4644771
什么是DOI,文献DOI怎么找? 2534653
邀请新用户注册赠送积分活动 1502712
关于科研通互助平台的介绍 1469375