A genome-wide association study of escitalopram treatment outcomes in patients with major depressive disorder

依西酞普兰 生物 全基因组关联研究 重性抑郁障碍 联想(心理学) 遗传关联 基因组 遗传学 内科学 基因型 单核苷酸多态性 内分泌学 基因 抗抑郁药 心理学 医学 扁桃形结构 海马体 心理治疗师
作者
Siyu Ren,He Peng,Jinniu Zhang,Jian Yang,Yi He,Zuoli Sun,Gang Wang
出处
期刊:Gene [Elsevier]
卷期号:926: 148596-148596
标识
DOI:10.1016/j.gene.2024.148596
摘要

Major depressive disorder (MDD) is a common psychological condition, the consequences of which, such as suicide, can be severe. Escitalopram, a selective serotonin reuptake inhibitor, is a commonly used antidepressant in clinics. However, more than one-third of patients with MDD do not respond to this drug. Gene polymorphism may affect the efficacy of escitalopram, but the genetic architecture of the antidepressant response in patients with MDD remains unclear. We perform a genome-wide association study (GWAS) of the genetic effect on the outcome of escitalopram in patients with MDD. A total of 203 patients with MDD and 176 healthy control (HC) adults were recruited from Beijing Anding Hospital. Patients received 12 weeks of antidepressant treatment with escitalopram. The Quick Inventory of Depressive Symptomatology-Self-Report (QIDS-SR) or Hamilton depression scale (HAMD) were used to evaluate the severity of depression symptoms at the baseline and the end of 2 and 12 weeks of treatment. A total of 140 variants in MDD patients were identified by GWAS to have genome-wide significance (p < 5e − 8) compared with HCs. Similarly, 189 and 18 variants were identified to be associated with QIDS-SR and HAMD score changes in patients after antidepressant treatment (p < 1e − 5), including rs12602361, rs72799048, rs16842235, and rs2518256. In the two weeks QIDS-SR score study, the gene-level association for these variants and gene set enrichment analyses implicate the enrichment of genes involved in the synaptic plasticity process and nervous system development that may be impaired. Our results implicate the predictive capacity of the effect of escitalopram treatment, supporting a link between genetic basis and remission of depression disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhanlonglsj发布了新的文献求助10
1秒前
1秒前
芍药完成签到,获得积分10
1秒前
Yogita完成签到,获得积分10
2秒前
DoctorYan完成签到,获得积分10
2秒前
Adler完成签到,获得积分10
2秒前
3秒前
坐宝马吃地瓜完成签到 ,获得积分10
3秒前
SciGPT应助Strike采纳,获得10
3秒前
自强不息完成签到,获得积分10
3秒前
4秒前
czq发布了新的文献求助30
4秒前
望春风完成签到,获得积分10
4秒前
4秒前
huangJP完成签到,获得积分10
5秒前
情怀应助Tira采纳,获得10
5秒前
王阳洋完成签到,获得积分10
5秒前
5秒前
6秒前
通~发布了新的文献求助10
6秒前
李爱国应助非常可爱采纳,获得20
6秒前
6秒前
7秒前
阿敏发布了新的文献求助10
8秒前
JamesPei应助小憩采纳,获得10
8秒前
jkhjkhj发布了新的文献求助10
8秒前
风中香之发布了新的文献求助30
8秒前
忍冬完成签到,获得积分10
9秒前
Zhong发布了新的文献求助10
10秒前
胡图图关注了科研通微信公众号
10秒前
爱吃泡芙发布了新的文献求助20
10秒前
xiuxiu_27发布了新的文献求助10
10秒前
小书包完成签到,获得积分10
11秒前
xxx发布了新的文献求助10
11秒前
直率的钢铁侠完成签到,获得积分10
11秒前
大模型应助Elaine采纳,获得10
12秒前
花痴的骁完成签到 ,获得积分10
12秒前
F冯发布了新的文献求助10
13秒前
干卿完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740