Embedding ZnCo2O4 quantum dots onto graphdiyne (g-CnH2n-2) nanosheets as a 0D/2D S-scheme heterojunction for highly efficient photocatalytic H2 evolution

异质结 光催化 量子点 嵌入 方案(数学) 纳米技术 材料科学 光电子学 化学工程 化学 计算机科学 催化作用 工程类 有机化学 数学 数学分析 人工智能
作者
Wei Deng,Xue Wang,Xuqiang Hao,Zhiliang Jin
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:351: 128068-128068 被引量:4
标识
DOI:10.1016/j.seppur.2024.128068
摘要

The design of environmentally friendly and cost-effective S-scheme heterojunctions with robust interfacial interactions is pivotal for enhancing photocatalytic performance and facilitating practical application. In this work, ZnCo2O4 quantum dots (QDs)/graphdiyne (ZCOG) S-scheme heterojunction was synthesized by a simple hydrothermal method. ZnCo2O4 QDs with quantum size effect were prepared by calcination, while graphdiyne (GDY) nanosheets were synthesized by reduction-elimination reaction using CuBr as catalyst. The maximum hydrogen production rate of ZCOG reaches 2472.80 μmol g-1h−1, which is 30.75 and 10.84 times higher than that of ZnCo2O4 QDs and GDY, respectively. This significantly enhanced photocatalytic activity is attributed to the strongly coupled S-scheme heterojunction between GDY and ZnCo2O4 QDs, which accelerates the photogenerated electron transfer while effectively suppressing the recombination of photogenerated carriers. In addition, the quantum size effect of the ZnCo2O4 QDs leads to an increase in the width of the electronic forbidden band, which enhances the energy of electrons (holes) in the conduction band (valence band). The S-scheme mechanism of ZCOG was revealed by in situ XPS, UPS and TRPL spectroscopy, and the reliability of the conclusions was further verified by DFT calculations. This work provides an efficient strategy for the construction of GDY-based photocatalysts with quantum size effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dyh6802发布了新的文献求助10
刚刚
1秒前
科研通AI5应助自信的叫兽采纳,获得10
1秒前
Lucas应助李枭采纳,获得10
1秒前
鸣蜩阿六完成签到,获得积分10
1秒前
完美世界应助呆萌士晋采纳,获得10
1秒前
2秒前
赵赵赵关注了科研通微信公众号
2秒前
冰冰发布了新的文献求助10
2秒前
瑞_完成签到,获得积分10
2秒前
缚大哥完成签到,获得积分20
3秒前
Lyven完成签到 ,获得积分10
3秒前
通~发布了新的文献求助10
3秒前
苯酚完成签到 ,获得积分10
3秒前
Left发布了新的文献求助10
3秒前
4秒前
logan完成签到,获得积分10
4秒前
CCY完成签到,获得积分10
4秒前
守夜人发布了新的文献求助10
5秒前
5秒前
小蘑菇应助zhui采纳,获得10
6秒前
6秒前
6秒前
科研通AI5应助猪猪hero采纳,获得10
6秒前
7秒前
星星泡饭发布了新的文献求助10
7秒前
DC完成签到,获得积分10
7秒前
科研通AI5应助111采纳,获得10
7秒前
隐形曼青应助jy采纳,获得10
8秒前
缚大哥发布了新的文献求助10
9秒前
10秒前
10秒前
在水一方应助无情的白桃采纳,获得10
11秒前
Li猪猪完成签到,获得积分10
11秒前
12秒前
怕孤独的白梦完成签到,获得积分20
12秒前
13秒前
鳗鱼灵寒发布了新的文献求助10
13秒前
潇洒的青完成签到,获得积分10
13秒前
眼里有光的阿墨完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794