Pinpointing the causal influences of stomatal anatomy and behavior on minimum, operational, and maximum leaf surface conductance

气孔密度 气孔导度 背景(考古学) 光合作用 表皮(毛发) 表皮(动物学) 生物 电导 植物角质层 植物 航程(航空) 物理 解剖 材料科学 凝聚态物理 古生物学 生物化学 复合材料
作者
Marissa Ochoa,Christian Henry,Grace P. John,Camila Dias Medeiros,Ruihua Pan,Christine Scoffoni,Thomas N. Buckley,Lawren Sack
出处
期刊:Plant Physiology [Oxford University Press]
卷期号:196 (1): 51-66 被引量:2
标识
DOI:10.1093/plphys/kiae292
摘要

Abstract Leaf surface conductance to water vapor and CO2 across the epidermis (gleaf) strongly determines the rates of gas exchange. Thus, clarifying the drivers of gleaf has important implications for resolving the mechanisms of photosynthetic productivity and leaf and plant responses and tolerance to drought. It is well recognized that gleaf is a function of the conductances of the stomata (gs) and of the epidermis + cuticle (gec). Yet, controversies have arisen around the relative roles of stomatal density (d) and size (s), fractional stomatal opening (α; aperture relative to maximum), and gec in determining gleaf. Resolving the importance of these drivers is critical across the range of leaf surface conductances, from strong stomatal closure under drought (gleaf,min), to typical opening for photosynthesis (gleaf,op), to maximum achievable opening (gleaf,max). We derived equations and analyzed a compiled database of published and measured data for approximately 200 species and genotypes. On average, within and across species, higher gleaf,min was determined 10 times more strongly by α and gec than by d and negligibly by s; higher gleaf,op was determined approximately equally by α (47%) and by stomatal anatomy (45% by d and 8% by s), and negligibly by gec; and higher gleaf,max was determined entirely by d. These findings clarify how diversity in stomatal functioning arises from multiple structural and physiological causes with importance shifting with context. The rising importance of d relative to α, from gleaf,min to gleaf,op, enables even species with low gleaf,min, which can retain leaves through drought, to possess high d and thereby achieve rapid gas exchange in periods of high water availability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
费老五完成签到 ,获得积分10
刚刚
1秒前
逸龙完成签到,获得积分0
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
梦思遗落完成签到,获得积分10
4秒前
5秒前
角度更多完成签到,获得积分10
5秒前
6秒前
LaTeXer应助傅。采纳,获得30
6秒前
周周完成签到,获得积分10
6秒前
尊敬的扬完成签到,获得积分20
8秒前
bjyxszd完成签到 ,获得积分10
8秒前
蓝天应助hyx9504采纳,获得10
8秒前
zht完成签到,获得积分10
9秒前
10秒前
11秒前
Lucas应助平常的无极采纳,获得10
12秒前
13秒前
abw完成签到 ,获得积分10
15秒前
俭朴的乐巧完成签到 ,获得积分10
15秒前
hj456完成签到,获得积分10
16秒前
普萘洛尔完成签到,获得积分10
16秒前
16秒前
独家阿吉豆完成签到,获得积分10
16秒前
小药童完成签到,获得积分0
16秒前
大宝剑3号完成签到 ,获得积分10
16秒前
17秒前
hyx9504完成签到,获得积分10
17秒前
着急的青枫应助青年才俊采纳,获得10
17秒前
平常的无极完成签到,获得积分20
17秒前
xueshu666完成签到 ,获得积分10
18秒前
LZH发布了新的文献求助10
18秒前
小章完成签到,获得积分10
19秒前
Sano完成签到 ,获得积分10
19秒前
mengy_075完成签到 ,获得积分10
20秒前
21秒前
落寞的觅柔完成签到,获得积分10
21秒前
KK完成签到,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603632
求助须知:如何正确求助?哪些是违规求助? 4688639
关于积分的说明 14855202
捐赠科研通 4694366
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806