Pinpointing the causal influences of stomatal anatomy and behavior on minimum, operational, and maximum leaf surface conductance

气孔密度 气孔导度 背景(考古学) 光合作用 表皮(毛发) 表皮(动物学) 生物 电导 植物角质层 植物 航程(航空) 物理 解剖 材料科学 凝聚态物理 古生物学 生物化学 复合材料
作者
Marissa Ochoa,Christian Henry,Grace P. John,Camila Dias Medeiros,Ruihua Pan,Christine Scoffoni,Thomas N. Buckley,Lawren Sack
出处
期刊:Plant Physiology [Oxford University Press]
标识
DOI:10.1093/plphys/kiae292
摘要

Abstract Leaf surface conductance to water vapor and CO2 across the epidermis (gleaf) strongly determines the rates of gas exchange. Thus, clarifying the drivers of gleaf has important implications for resolving the mechanisms of photosynthetic productivity and leaf and plant responses and tolerance to drought. It is well recognized that gleaf is a function of the conductances of the stomata (gs) and of the epidermis + cuticle (gec). Yet, controversies have arisen around the relative roles of stomatal density (d) and size (s), fractional stomatal opening (α; aperture relative to maximum), and gec in determining gleaf. Resolving the importance of these drivers is critical across the range of leaf surface conductances, from strong stomatal closure under drought (gleaf,min), to typical opening for photosynthesis (gleaf,op), to maximum achievable opening (gleaf,max). We derived equations and analyzed a compiled database of published and measured data for approximately 200 species and genotypes. On average, within and across species, higher gleaf,min was determined 10 times more strongly by α and gec than by d and negligibly by s; higher gleaf,op was determined approximately equally by α (47%) and by stomatal anatomy (45% by d and 8% by s), and negligibly by gec; and higher gleaf,max was determined entirely by d. These findings clarify how diversity in stomatal functioning arises from multiple structural and physiological causes with importance shifting with context. The rising importance of d relative to α, from gleaf,min to gleaf,op, enables even species with low gleaf,min, which can retain leaves through drought, to possess high d and thereby achieve rapid gas exchange in periods of high water availability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松晓曼发布了新的文献求助10
1秒前
asdxsweef应助科研通管家采纳,获得30
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
调研昵称发布了新的文献求助10
1秒前
今后应助科研通管家采纳,获得10
1秒前
深情安青应助无问采纳,获得10
1秒前
sally_5202完成签到 ,获得积分10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
smile应助科研通管家采纳,获得10
1秒前
1秒前
汉堡包应助科研通管家采纳,获得20
1秒前
完美世界应助科研通管家采纳,获得50
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
2秒前
hqx完成签到,获得积分10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
iris应助欢喜沛珊采纳,获得10
3秒前
靓丽念薇完成签到,获得积分10
3秒前
在下黄小円完成签到 ,获得积分10
3秒前
咿呀咿呀发布了新的文献求助10
3秒前
orixero应助强健的雅霜采纳,获得10
3秒前
NexusExplorer应助余日秋山采纳,获得10
3秒前
Leisure_Lee完成签到,获得积分10
4秒前
yufanhui发布了新的文献求助20
4秒前
Orange应助HY采纳,获得10
4秒前
5秒前
5秒前
林子青完成签到,获得积分10
6秒前
6秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307880
求助须知:如何正确求助?哪些是违规求助? 2941451
关于积分的说明 8503412
捐赠科研通 2615951
什么是DOI,文献DOI怎么找? 1429290
科研通“疑难数据库(出版商)”最低求助积分说明 663712
邀请新用户注册赠送积分活动 648671