Numerical calibration of the mooring system for a semi-submersible floating wind turbine model

海洋工程 系泊 涡轮机 校准 工程类 环境科学 地质学 航空航天工程 物理 量子力学
作者
Andrea L. Bertozzi,Francesco Niosi,Xiaoli Jiang,Zhiyu Jiang
出处
期刊:Journal of offshore mechanics and Arctic engineering [ASME International]
卷期号:146 (6) 被引量:1
标识
DOI:10.1115/1.4065551
摘要

Abstract Numerical modeling of the floating offshore wind turbine (FOWT) dynamics plays a critical role at the design stage of a floating wind project. Still, there exist challenges for verification of efficient engineering models against experimental results. Recently, an experimental campaign was carried out for a 1:96 downscaled model of the OC4-DeepCWind semi-submersible platform with mooring lines made of fiber ropes and chains. Leveraging the results of this campaign, this paper focuses on the development and calibration of a numerical model for the semi-submersible platform with a focus on the dynamic responses under bichromatic waves. In the numerical model, the hydrodynamic loads are modeled based on the potential flow theory with Morison drag. The lumped mass method is applied to model the mooring system. Both free decay tests and bichromatic wave conditions are considered in the model calibration process, and key uncertain parameters (e.g., mooring line length) that affect the response have been identified and discussed. Using the proposed calibration procedure, we establish a reasonably good numerical model for prediction of the platform motion and mooring dynamics. The low-frequency responses of the platform under bichromatic waves are well-captured. These outcomes contribute to the development of efficient numerical FOWT models under experimental uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助DK采纳,获得10
1秒前
快乐小白菜完成签到,获得积分10
1秒前
joy完成签到,获得积分10
1秒前
1秒前
1秒前
孟春纪事完成签到,获得积分10
2秒前
清爽忆山完成签到,获得积分10
2秒前
小马甲应助轻松的怜容采纳,获得10
2秒前
Grayball应助噢噢采纳,获得10
2秒前
言辞完成签到,获得积分10
2秒前
小柠檬完成签到,获得积分20
2秒前
2秒前
土豆丝完成签到 ,获得积分10
3秒前
念念完成签到,获得积分10
3秒前
乐乐应助starry采纳,获得10
3秒前
温暖冰珍完成签到 ,获得积分10
3秒前
淳之风完成签到,获得积分20
4秒前
CarterXD应助hao采纳,获得30
4秒前
科研rain完成签到 ,获得积分10
4秒前
4秒前
清爽忆山发布了新的文献求助10
5秒前
睡觉晒太阳完成签到,获得积分10
5秒前
andy完成签到,获得积分10
5秒前
5秒前
Itachi12138完成签到,获得积分10
5秒前
CipherSage应助蓝莓松饼采纳,获得10
5秒前
5秒前
团团完成签到,获得积分10
5秒前
追寻的易烟完成签到,获得积分10
5秒前
snow完成签到,获得积分10
6秒前
6秒前
6秒前
1111完成签到,获得积分20
7秒前
爆米花应助笑点低蜜蜂采纳,获得10
7秒前
橘子味汽水完成签到 ,获得积分10
7秒前
Victor陈完成签到,获得积分10
7秒前
7秒前
seed85完成签到,获得积分10
7秒前
最初完成签到,获得积分20
8秒前
Hello应助Chem is try采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672